Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.
Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
Lancet Digit Health. 2023 Jul;5(7):e458-e466. doi: 10.1016/S2589-7500(23)00068-7. Epub 2023 May 18.
Recurrent graft fibrosis after liver transplantation can threaten both graft and patient survival. Therefore, early detection of fibrosis is essential to avoid disease progression and the need for retransplantation. Non-invasive blood-based biomarkers of fibrosis are limited by moderate accuracy and high cost. We aimed to evaluate the accuracy of machine learning algorithms in detecting graft fibrosis using longitudinal clinical and laboratory data.
In this retrospective, longitudinal study, we trained machine learning algorithms, including our novel weighted long short-term memory (LSTM) model, to predict the risk of significant fibrosis using follow-up data from 1893 adults who had a liver transplantation between Feb 1, 1987, and Dec 30, 2019, with at least one liver biopsy post transplantation. Liver biopsy samples with indefinitive fibrosis stage and those from patients with multiple transplantations were excluded. Longitudinal clinical variables were collected from transplantation to the date of last available liver biopsy. Deep learning models were trained on 70% of the patients as the training set and 30% of the patients as the test set. The algorithms were also separately tested on longitudinal data from patients in a subgroup of patients (n=149) who had transient elastography within 1 year before or after the date of liver biopsy. Weighted LSTM model performance for diagnosing significant fibrosis was compared against LSTM, other deep learning models (recurrent neural network and temporal convolutional network), and machine learning models (Random Forest, Support vector machines, Logistic regression, Lasso regression, and Ridge regression) and aspartate aminotransferase-to-platelet ratio index (APRI), fibrosis-4 index (FIB-4), and transient elastography.
1893 people who had a liver transplantation (1261 [67%] men and 632 [33%] women) with at least one liver biopsy between Jan 1, 1992, and June 30, 2020, were included in the study (591 [31%] cases and 1302 [69%] controls). The median age at liver transplantation was 53·7 years (IQR 47·3-59·0) for cases and 55·3 years (48·0 to 61·2) for controls. The median time interval between transplant and liver biopsy was 21 months (5 to 71). The weighted LSTM model (area under the curve 0·798 [95% CI 0·790 to 0·810]) consistently outperformed other methods, including unweighted LSTM (0·761 [0·750 to 0·769]; p=0·031) Recurrent Neural Network (0·736 [0·721 to 0·744]), Temporal Convolutional Networks (0·700 [0·662 to 0·747], and Random Forest 0·679 [0·652 to 0·707]), FIB-4 (0·650 [0·636 to 0·663]) and APRI (0·682 [0·671 to 0·694]) when diagnosing F2 or worse stage fibrosis. In a subgroup of patients with transient elastography results, weighted LSTM was not significantly better at detecting fibrosis (≥F2; 0·705 [0·687 to 0·724]) than transient elastography (0·685 [0·662 to 0·704]). The top ten variables predictive for significant fibrosis were recipient age, primary indication for transplantation, donor age, and longitudinal data for creatinine, alanine aminotransferase, aspartate aminotransferase, total bilirubin, platelets, white blood cell count, and weight.
Deep learning algorithms, particularly weighted LSTM, outperform other routinely used non-invasive modalities and could help with the earlier diagnosis of graft fibrosis using longitudinal clinical and laboratory variables. The list of most important predictive variables for the development of fibrosis will enable clinicians to modify their management accordingly to prevent onset of graft cirrhosis.
Canadian Institute of Health Research, American Society of Transplantation, Toronto General and Western Hospital Foundation, and Paladin Labs.
肝移植后反复发生的移植肝纤维化会威胁移植物和患者的生存。因此,早期发现纤维化对于避免疾病进展和需要再次移植至关重要。纤维化的非侵入性血液生物标志物的准确性有限,且成本较高。我们旨在利用纵向临床和实验室数据评估机器学习算法检测移植肝纤维化的准确性。
在这项回顾性、纵向研究中,我们训练了机器学习算法,包括我们新的加权长短期记忆(LSTM)模型,使用 1893 名成人的随访数据来预测移植肝纤维化的风险,这些患者于 1987 年 2 月 1 日至 2019 年 12 月 30 日之间接受了肝移植,并且在移植后至少有一次肝活检。排除了纤维化分期不确定的肝活检样本和多次接受肝移植的患者。从移植到最后一次肝活检的时间内收集了纵向临床变量。将 70%的患者作为训练集,30%的患者作为测试集,对深度学习模型进行了训练。还分别在一组(n=149)患者的纵向数据上测试了算法,这些患者在肝活检日期前或后 1 年内接受了瞬时弹性成像。比较了加权 LSTM 模型对显著纤维化的诊断性能与 LSTM、其他深度学习模型(递归神经网络和时间卷积网络)以及机器学习模型(随机森林、支持向量机、逻辑回归、套索回归和岭回归)和天冬氨酸氨基转移酶-血小板比值指数(APRI)、纤维化-4 指数(FIB-4)和瞬时弹性成像。
本研究共纳入了 1893 名接受肝移植的患者(1261 名男性[67%]和 632 名女性[33%]),这些患者在 1992 年 1 月 1 日至 2020 年 6 月 30 日之间进行了至少一次肝活检(591 例病例和 1302 例对照)。肝移植时的中位年龄为病例组 53.7 岁(IQR 47.3-59.0),对照组为 55.3 岁(48.0-61.2)。移植和肝活检之间的中位时间间隔为 21 个月(5-71)。加权 LSTM 模型(曲线下面积 0.798[95%CI 0.790-0.810])在诊断 F2 或更严重的纤维化时,始终优于其他方法,包括未加权 LSTM(0.761[0.750-0.769];p=0.031)、递归神经网络(0.736[0.721-0.744])、时间卷积网络(0.700[0.662-0.747])和随机森林(0.679[0.652-0.707])、FIB-4(0.650[0.636-0.663])和 APRI(0.682[0.671-0.694])。在瞬时弹性成像结果的亚组患者中,加权 LSTM 在检测纤维化(≥F2;0.705[0.687-0.724])方面并不显著优于瞬时弹性成像(0.685[0.662-0.704])。预测显著纤维化的前 10 个最重要变量是受者年龄、移植的主要适应证、供者年龄以及纵向数据的肌酐、丙氨酸氨基转移酶、天冬氨酸氨基转移酶、总胆红素、血小板、白细胞计数和体重。
深度学习算法,特别是加权 LSTM,优于其他常用的非侵入性方法,可以利用纵向临床和实验室数据更早地诊断移植肝纤维化。纤维化发展的最重要预测变量列表将使临床医生能够相应地调整其治疗方案,以防止移植物肝硬化的发生。
加拿大卫生研究院、美国移植学会、多伦多总医院和西部医院基金会以及 Paladin 实验室。