Suppr超能文献

移植智能量化(GraftIQ):整合临床见解的混合多类神经网络,用于肝移植受者的多结果预测。

GraftIQ: Hybrid multi-class neural network integrating clinical insight for multi-outcome prediction in liver transplant recipients.

作者信息

Sharma Divya, Gotlieb Neta, Chahal Daljeet, Ahn Joseph C, Engel Bastian, Taubert Richard, Tan Eunice, Yun Lau Kai, Naimimohasses Sara, Ray Ankit, Han Yoojin, Gehlaut Sara, Shojaee Maryam, Sivanendran Surabie, Naghibzadeh Maryam, Azhie Amirhossein, Keshavarzi Sareh, Duan Kai, Lilly Leslie, Selzner Nazia, Tsien Cynthia, Jaeckel Elmar, Xu Wei, Bhat Mamatha

机构信息

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.

Department of Mathematics and Statistics, York University, Toronto, ON, Canada.

出版信息

Nat Commun. 2025 May 28;16(1):4943. doi: 10.1038/s41467-025-59610-8.

Abstract

Liver transplant recipients (LTRs) are at risk of graft injury, leading to cirrhosis and reduced survival. Liver biopsy, the diagnostic gold standard, is invasive and risky. We developed a hybrid multi-class neural network (NN) model, 'GraftIQ,' integrating clinician expertise for non-invasive graft pathology diagnosis. Biopsies from LTRs (1992-2020) were classified into six categories using demographic, clinical, and lab data from 30 days pre-biopsy. The dataset (5217 biopsies) was split 70/30 for training/testing, with external validation at Mayo Clinic, Hannover Medical School, and NUHS Singapore. Bayesian fusion was used to combine clinician-derived probabilities with NN predictions, improving performance. Here we show that GraftIQ (MulticlassNN+clinical insight) achieved an AUC of 0.902 (95% CI:0.884-0.919), up from 0.885 with NN alone. Internal and external validation demonstrated 10-16% higher AUC than conventional ML models. GraftIQ demonstrates high accuracy in identifying graft etiologies and offers a valuable clinical decision support tool for LTRs.

摘要

肝移植受者(LTRs)存在移植物损伤风险,可导致肝硬化并降低生存率。肝活检作为诊断金标准,具有侵入性且有风险。我们开发了一种混合多类神经网络(NN)模型“GraftIQ”,整合临床医生专业知识用于非侵入性移植物病理诊断。利用活检前30天的人口统计学、临床和实验室数据,将LTRs(1992 - 2020年)的活检样本分为六类。数据集(5217份活检样本)按70/30比例划分用于训练/测试,并在梅奥诊所、汉诺威医学院和新加坡国立大学健康科学学院进行外部验证。采用贝叶斯融合将临床医生得出的概率与NN预测相结合,提高了性能。在此我们表明,GraftIQ(多类神经网络+临床见解)的曲线下面积(AUC)达到0.902(95%置信区间:0.884 - 0.919),相比仅使用神经网络时的0.885有所提高。内部和外部验证表明,其AUC比传统机器学习模型高10 - 16%。GraftIQ在识别移植物病因方面具有很高的准确性,并为LTRs提供了有价值的临床决策支持工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94bd/12120053/2894832e7028/41467_2025_59610_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验