文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血清代谢组学特征可区分急性呼吸窘迫综合征宿主反应亚表型的脂肪酸氧化缺陷。

Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome.

机构信息

Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Montefiore Hospital, University of Pittsburgh School of Medicine, NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.

Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Respir Res. 2023 May 20;24(1):136. doi: 10.1186/s12931-023-02447-w.


DOI:10.1186/s12931-023-02447-w
PMID:37210531
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10199668/
Abstract

BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.

摘要

背景:脂肪酸氧化 (FAO) 缺陷与急性肺损伤的实验模型有关,并与危重病患者的不良预后相关。在这项研究中,我们分别检测了酰基辅酶 A 谱和 3-甲基组氨酸作为 FAO 缺陷和骨骼肌分解代谢的标志物,以评估急性呼吸衰竭患者。我们还确定了这些代谢物与宿主反应性 ARDS 亚表型、炎症生物标志物以及急性呼吸衰竭患者的临床结局之间的相关性。

方法:在一项嵌套病例对照队列研究中,我们对因气道保护而插管的患者(气道对照)、1 类(低炎症)和 2 类(高炎症)ARDS 患者(每组 50 例)在机械通气早期进行了血清代谢物的靶向分析。采用液相色谱-高分辨质谱法,通过同位素标记标准品进行相对含量的定量分析,并结合血浆生物标志物和临床数据进行分析。

结果:在所分析的酰基辅酶 A 中,与 1 类 ARDS 或气道对照相比,2 类 ARDS 患者的辛酰基辅酶 A 水平增加了两倍(分别为 P<0.0004 和 P<0.0001),并且通过定量分位数计算分析,2 类 ARDS 与辛酰基辅酶 A 呈正相关(P=0.004)。此外,与 1 类 ARDS 相比,2 类 ARDS 患者的乙酰基辅酶 A 和 3-甲基组氨酸水平升高,并与炎症生物标志物呈正相关。在所有患有急性呼吸衰竭的患者中,30 天存活者的 3-甲基组氨酸水平升高(P=0.0018),而需要血管加压支持的患者中辛酰基辅酶 A 水平升高,但存活者中未升高(P=0.0001 和 P=0.28)。

结论:本研究表明,乙酰基辅酶 A、辛酰基辅酶 A 和 3-甲基组氨酸水平的增加可将 2 类 ARDS 与 1 类 ARDS 患者和气道对照区分开来。在整个队列中,无论是病因还是宿主反应亚表型,辛酰基辅酶 A 和 3-甲基组氨酸与急性呼吸衰竭患者的不良预后相关。这些发现提示,在疾病的早期阶段,血清代谢物可作为 ARDS 和危重病患者不良预后的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/2b31bca99bf1/12931_2023_2447_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/72033d0c90a8/12931_2023_2447_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/8106d93997c9/12931_2023_2447_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/63fb46ea7a6c/12931_2023_2447_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/70ccc35afc54/12931_2023_2447_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/15bd174f9fc4/12931_2023_2447_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/423df8514600/12931_2023_2447_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/2b31bca99bf1/12931_2023_2447_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/72033d0c90a8/12931_2023_2447_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/8106d93997c9/12931_2023_2447_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/63fb46ea7a6c/12931_2023_2447_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/70ccc35afc54/12931_2023_2447_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/15bd174f9fc4/12931_2023_2447_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/423df8514600/12931_2023_2447_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/10200051/2b31bca99bf1/12931_2023_2447_Fig7_HTML.jpg

相似文献

[1]
Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome.

Respir Res. 2023-5-20

[2]
Host-Response Subphenotypes Offer Prognostic Enrichment in Patients With or at Risk for Acute Respiratory Distress Syndrome.

Crit Care Med. 2019-12

[3]
Biomarker-Based Classification of Patients With Acute Respiratory Failure Into Inflammatory Subphenotypes: A Single-Center Exploratory Study.

Crit Care Explor. 2021-8-19

[4]
Alveolar Biomarker Profiles in Subphenotypes of the Acute Respiratory Distress Syndrome.

Crit Care Med. 2023-1-1

[5]
Inflammatory subphenotypes previously identified in ARDS are associated with mortality at intensive care unit discharge: a secondary analysis of a prospective observational study.

Crit Care. 2024-5-7

[6]
Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis.

Lancet Respir Med. 2022-4

[7]
Subphenotypes in patients with acute respiratory distress syndrome treated with high-flow oxygen.

Crit Care. 2023-11-1

[8]
Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study.

Thorax. 2022-1

[9]
Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial.

Lancet Respir Med. 2018-8-2

[10]
Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials.

Lancet Respir Med. 2014-5-19

引用本文的文献

[1]
Pulmonary metabolic changes in a rabbit model of Pseudomonas aeruginosa pneumonia: insights from metabolomic analysis.

BMC Microbiol. 2025-5-28

[2]
Transgenerational associations between newborn metabolic profiles and bronchopulmonary dysplasia in neonates born to mothers with an obese phenotype.

Sci Rep. 2025-1-7

[3]
Identification of potential biomarkers and pathways involved in high-altitude pulmonary edema using GC-MS and LC-MS metabolomic methods.

Sci Rep. 2024-12-28

[4]
Iridium(III) solvent complex-based electrogenerated chemiluminescence method for the detection of 3-methylhistidine in urine.

Anal Bioanal Chem. 2024-9

[5]
The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism.

Cell Mol Life Sci. 2024-3-8

[6]
"Now We Got Bad Blood": Beyond Phenotype Labels in an "Era" of Meta-omics in Critical Illness.

Am J Respir Crit Care Med. 2024-4-1

本文引用的文献

[1]
Plasma metabolic profiling implicates dysregulated lipid metabolism and glycolytic shift in hyperinflammatory ARDS.

Am J Physiol Lung Cell Mol Physiol. 2023-3-1

[2]
Metabolic signatures of ARDS and ARDS heterogeneity.

Am J Physiol Lung Cell Mol Physiol. 2021-12-1

[3]
Prenatal maternal phthalate exposures and trajectories of childhood adiposity from four to twelve years.

Environ Res. 2022-3

[4]
Biomarker-Based Classification of Patients With Acute Respiratory Failure Into Inflammatory Subphenotypes: A Single-Center Exploratory Study.

Crit Care Explor. 2021-8-19

[5]
Urinary polycyclic aromatic hydrocarbon metabolites and mortality in the United States: A prospective analysis.

PLoS One. 2021

[6]
Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency.

J Lipid Res. 2021

[7]
Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

Redox Biol. 2021-5

[8]
Acute Respiratory Distress Syndrome Subphenotypes beyond the Syndrome: A Step toward Treatable Traits?

Am J Respir Crit Care Med. 2021-6-15

[9]
Altered lung metabolism and mitochondrial DAMPs in lung injury due to acute kidney injury.

Am J Physiol Lung Cell Mol Physiol. 2021-5-1

[10]
COVID-19 versus Non-COVID-19 Acute Respiratory Distress Syndrome: Comparison of Demographics, Physiologic Parameters, Inflammatory Biomarkers, and Clinical Outcomes.

Ann Am Thorac Soc. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索