Suppr超能文献

通过识别桥接节点来为基于 Skip-gram 的节点嵌入生成事后解释。

Generating post-hoc explanations for Skip-gram-based node embeddings by identifying important nodes with bridgeness.

机构信息

Sungkyunkwan University, Republic of Korea.

Purdue University and Microsoft Research, USA.

出版信息

Neural Netw. 2023 Jul;164:546-561. doi: 10.1016/j.neunet.2023.04.029. Epub 2023 May 4.

Abstract

Node representation learning in a network is an important machine learning technique for encoding relational information in a continuous vector space while preserving the inherent properties and structures of the network. Recently, unsupervised node embedding methods such as DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), struc2vec (Ribeiro et al., 2017), PTE (Tang et al., 2015), UserItem2vec (Wu et al., 2020), and RWJBG (Li et al., 2021) have emerged from the Skip-gram model (Mikolov et al., 2013) and perform better performance in several downstream tasks such as node classification and link prediction than the existing relational models. However, providing post-hoc explanations of unsupervised embeddings remains a challenging problem because of the lack of explanation methods and theoretical studies applicable for embeddings. In this paper, we first show that global explanations to the Skip-gram-based embeddings can be found by computing bridgeness under a spectral cluster-aware local perturbation. Moreover, a novel gradient-based explanation method, which we call GRAPH-wGD, is proposed that allows the top-q global explanations about learned graph embedding vectors more efficiently. Experiments show that the ranking of nodes by scores using GRAPH-wGD is highly correlated with true bridgeness scores. We also observe that the top-q node-level explanations selected by GRAPH-wGD have higher importance scores and produce more changes in class label prediction when perturbed, compared with the nodes selected by recent alternatives, using five real-world graphs.

摘要

网络中的节点表示学习是一种重要的机器学习技术,可将关系信息编码到连续向量空间中,同时保留网络的固有属性和结构。最近,出现了一些无监督节点嵌入方法,如 DeepWalk(Perozzi 等人,2014 年)、LINE(Tang 等人,2015 年)、struc2vec(Ribeiro 等人,2017 年)、PTE(Tang 等人,2015 年)、UserItem2vec(Wu 等人,2020 年)和 RWJBG(Li 等人,2021 年),它们源自 Skip-gram 模型(Mikolov 等人,2013 年),在节点分类和链路预测等下游任务中的性能优于现有的关系模型。然而,由于缺乏适用于嵌入的解释方法和理论研究,提供无监督嵌入的事后解释仍然是一个具有挑战性的问题。在本文中,我们首先表明,可以通过在谱聚类感知的局部扰动下计算桥接度来找到基于 Skip-gram 的嵌入的全局解释。此外,我们提出了一种新的基于梯度的解释方法,我们称之为 GRAPH-wGD,它可以更有效地找到学习到的图嵌入向量的前 q 个全局解释。实验表明,使用 GRAPH-wGD 对得分进行排名的节点与真实桥接得分高度相关。我们还观察到,与最近的替代方法选择的节点相比,使用五个真实图,GRAPH-wGD 选择的前 q 个节点级解释具有更高的重要性得分,并且在受到扰动时对类别标签预测的影响更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验