Instituto Tecnológico Vale, Belém, PA, CEP 66055-090, Brazil.
Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil.
Braz J Microbiol. 2023 Sep;54(3):1523-1532. doi: 10.1007/s42770-023-00993-5. Epub 2023 May 22.
Marine environments are a repository for metals, and humans have enhanced this phenomenon over the years. Heavy metals are notoriously toxic due to their ability to biomagnify in the food chain and interact with cellular components. Nevertheless, some bacteria have physiological mechanisms that enable them to survive in impacted environments. This characteristic makes them important as biotechnological tools for environmental remediation. Thus, we isolated a bacterial consortium in Guanabara Bay (Brazil), a place with a long metal pollution history. To test the growth efficiency of this consortium in Cu-Zn-Pb-Ni-Cd medium, we measured the activity of key enzymes of microbial activity (esterases and dehydrogenase) under acidic (4.0) and neutral pH conditions, as well as the number of living cells, biopolymer production, and changes in microbial composition during metal exposure. Additionally, we calculated the predicted physiology based on microbial taxonomy. During the assay, a slight modification in bacterial composition was observed, with low abundance changes and little production of carbohydrates. Oceanobacillus chironomi, Halolactibacillus miurensis, and Alkaliphilus oremlandii were predominant in pH 7, despite O. chironomi and Tissierella creatinophila in pH 4, and T. creatinophila in Cu-Zn-Pb-Ni-Cd treatment. The metabolism represented by esterases and dehydrogenase enzymes suggested bacterial investment in esterases to capture nutrients and meet the energy demand in an environment with metal stress. Their metabolism potentially shifted to chemoheterotrophy and recycling nitrogenous compounds. Moreover, concomitantly, bacteria produced more lipids and proteins, suggesting extracellular polymeric substance production and growth in a metal-stressed environment. The isolated consortium showed promise for bioremediation of multimetal contamination and could be a valuable tool in future bioremediation programs.
海洋环境是金属的储存库,多年来,人类加剧了这种现象。重金属由于其在食物链中生物放大的能力以及与细胞成分相互作用的能力而具有毒性。然而,一些细菌具有生理机制,使它们能够在受影响的环境中生存。这种特性使它们成为环境修复的生物技术工具的重要组成部分。因此,我们在瓜纳巴拉湾(巴西)分离了一个细菌联合体,这个地方有很长的金属污染历史。为了测试该联合体在 Cu-Zn-Pb-Ni-Cd 培养基中的生长效率,我们在酸性(4.0)和中性 pH 条件下测量了微生物活性(酯酶和脱氢酶)的关键酶的活性,以及活细胞数量、生物聚合物生产以及在金属暴露期间微生物组成的变化。此外,我们根据微生物分类学计算了预测生理学。在实验过程中,观察到细菌组成的轻微变化,丰度变化较小,碳水化合物产量较低。Oceanobacillus chironomi、Halolactibacillus miurensis 和 Alkaliphilus oremlandii 在 pH 7 时占优势,尽管 O. chironomi 和 Tissierella creatinophila 在 pH 4 时占优势,而 T. creatinophila 在 Cu-Zn-Pb-Ni-Cd 处理时占优势。酯酶和脱氢酶酶所代表的代谢表明,细菌投资于酯酶以捕获营养物质并满足金属胁迫环境中的能量需求。它们的新陈代谢可能转向化能异养和氮化合物的回收。此外,同时,细菌产生了更多的脂类和蛋白质,表明在金属胁迫环境中产生了细胞外聚合物物质和生长。分离的联合体显示出用于多金属污染生物修复的潜力,并且可能成为未来生物修复计划中的有价值工具。