用于辅助经皮骨盆骨折固定的自主 X 射线图像采集和解读系统。

An autonomous X-ray image acquisition and interpretation system for assisting percutaneous pelvic fracture fixation.

机构信息

Johns Hopkins University, Baltimore, 21210, MD, USA.

Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, USA.

出版信息

Int J Comput Assist Radiol Surg. 2023 Jul;18(7):1201-1208. doi: 10.1007/s11548-023-02941-y. Epub 2023 May 22.

Abstract

PURPOSE

Percutaneous fracture fixation involves multiple X-ray acquisitions to determine adequate tool trajectories in bony anatomy. In order to reduce time spent adjusting the X-ray imager's gantry, avoid excess acquisitions, and anticipate inadequate trajectories before penetrating bone, we propose an autonomous system for intra-operative feedback that combines robotic X-ray imaging and machine learning for automated image acquisition and interpretation, respectively.

METHODS

Our approach reconstructs an appropriate trajectory in a two-image sequence, where the optimal second viewpoint is determined based on analysis of the first image. A deep neural network is responsible for detecting the tool and corridor, here a K-wire and the superior pubic ramus, respectively, in these radiographs. The reconstructed corridor and K-wire pose are compared to determine likelihood of cortical breach, and both are visualized for the clinician in a mixed reality environment that is spatially registered to the patient and delivered by an optical see-through head-mounted display.

RESULTS

We assess the upper bounds on system performance through in silico evaluation across 11 CTs with fractures present, in which the corridor and K-wire are adequately reconstructed. In post hoc analysis of radiographs across 3 cadaveric specimens, our system determines the appropriate trajectory to within 2.8 ± 1.3 mm and 2.7 ± 1.8[Formula: see text].

CONCLUSION

An expert user study with an anthropomorphic phantom demonstrates how our autonomous, integrated system requires fewer images and lower movement to guide and confirm adequate placement compared to current clinical practice. Code and data are available.

摘要

目的

经皮骨折固定术需要多次 X 射线采集,以确定骨骼解剖结构中合适的工具轨迹。为了减少调整 X 射线成像仪龙门架的时间,避免过度采集,并在穿透骨骼之前预测轨迹不足,我们提出了一种用于术中反馈的自主系统,该系统结合了机器人 X 射线成像和机器学习,分别用于自动图像采集和解释。

方法

我们的方法在两图像序列中重建合适的轨迹,其中最佳的第二视角是基于对第一图像的分析确定的。深度神经网络负责检测工具和通道,这里分别是 K 型线和耻骨上支。重建的通道和 K 型线位置用于确定皮质穿透的可能性,并在混合现实环境中为临床医生可视化,该环境与患者空间配准,并通过光学透视头戴式显示器提供。

结果

我们通过对 11 例存在骨折的 CT 进行的计算机模拟评估来评估系统性能的上限,在这些 CT 中,通道和 K 型线得到了充分的重建。在后处理的 3 具尸体标本的 X 射线分析中,我们的系统确定了适当的轨迹,偏差在 2.8 ± 1.3mm 和 2.7 ± 1.8[公式:见正文]之间。

结论

一项针对拟人化模型的专家用户研究表明,与当前的临床实践相比,我们的自主、集成系统需要更少的图像和更低的运动来引导和确认适当的位置。代码和数据可提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索