Gao Cong, Liu Xingtong, Gu Wenhao, Killeen Benjamin, Armand Mehran, Taylor Russell, Unberath Mathias
Johns Hopkins University, Baltimore MD 21218, USA.
Med Image Comput Comput Assist Interv. 2020 Oct;12263:329-339. doi: 10.1007/978-3-030-59716-0_32. Epub 2020 Sep 29.
Differentiable rendering is a technique to connect 3D scenes with corresponding 2D images. Since it is differentiable, processes during image formation can be learned. Previous approaches to differentiable rendering focus on mesh-based representations of 3D scenes, which is inappropriate for medical applications where volumetric, voxelized models are used to represent anatomy. We propose a novel Projective Spatial Transformer module that generalizes spatial transformers to projective geometry, thus enabling differentiable volume rendering. We demonstrate the usefulness of this architecture on the example of 2D/3D registration between radiographs and CT scans. Specifically, we show that our transformer enables end-to-end learning of an image processing and projection model that approximates an image similarity function that is convex with respect to the pose parameters, and can thus be optimized effectively using conventional gradient descent. To the best of our knowledge, we are the first to describe the spatial transformers in the context of projective transmission imaging, including rendering and pose estimation. We hope that our developments will benefit related 3D research applications. The source code is available at https://github.com/gaocong13/Projective-Spatial-Transformers.
可微渲染是一种将3D场景与相应2D图像相连接的技术。由于它是可微的,因此可以学习图像形成过程。先前的可微渲染方法侧重于3D场景的基于网格的表示,这对于使用体素化模型来表示解剖结构的医学应用来说并不合适。我们提出了一种新颖的投影空间变换器模块,它将空间变换器推广到射影几何,从而实现可微体渲染。我们以X光片和CT扫描之间的2D/3D配准为例,展示了这种架构的实用性。具体来说,我们表明我们的变换器能够对图像处理和投影模型进行端到端学习,该模型近似于一个关于姿态参数呈凸性的图像相似性函数,因此可以使用传统梯度下降法进行有效优化。据我们所知,我们是第一个在投影透射成像(包括渲染和姿态估计)的背景下描述空间变换器的。我们希望我们的进展将惠及相关的3D研究应用。源代码可在https://github.com/gaocong13/Projective-Spatial-Transformers获取。