Suppr超能文献

将空间变换推广到射影几何及其在二维/三维配准中的应用

Generalizing Spatial Transformers to Projective Geometry with Applications to 2D/3D Registration.

作者信息

Gao Cong, Liu Xingtong, Gu Wenhao, Killeen Benjamin, Armand Mehran, Taylor Russell, Unberath Mathias

机构信息

Johns Hopkins University, Baltimore MD 21218, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12263:329-339. doi: 10.1007/978-3-030-59716-0_32. Epub 2020 Sep 29.

Abstract

Differentiable rendering is a technique to connect 3D scenes with corresponding 2D images. Since it is differentiable, processes during image formation can be learned. Previous approaches to differentiable rendering focus on mesh-based representations of 3D scenes, which is inappropriate for medical applications where volumetric, voxelized models are used to represent anatomy. We propose a novel Projective Spatial Transformer module that generalizes spatial transformers to projective geometry, thus enabling differentiable volume rendering. We demonstrate the usefulness of this architecture on the example of 2D/3D registration between radiographs and CT scans. Specifically, we show that our transformer enables end-to-end learning of an image processing and projection model that approximates an image similarity function that is convex with respect to the pose parameters, and can thus be optimized effectively using conventional gradient descent. To the best of our knowledge, we are the first to describe the spatial transformers in the context of projective transmission imaging, including rendering and pose estimation. We hope that our developments will benefit related 3D research applications. The source code is available at https://github.com/gaocong13/Projective-Spatial-Transformers.

摘要

可微渲染是一种将3D场景与相应2D图像相连接的技术。由于它是可微的,因此可以学习图像形成过程。先前的可微渲染方法侧重于3D场景的基于网格的表示,这对于使用体素化模型来表示解剖结构的医学应用来说并不合适。我们提出了一种新颖的投影空间变换器模块,它将空间变换器推广到射影几何,从而实现可微体渲染。我们以X光片和CT扫描之间的2D/3D配准为例,展示了这种架构的实用性。具体来说,我们表明我们的变换器能够对图像处理和投影模型进行端到端学习,该模型近似于一个关于姿态参数呈凸性的图像相似性函数,因此可以使用传统梯度下降法进行有效优化。据我们所知,我们是第一个在投影透射成像(包括渲染和姿态估计)的背景下描述空间变换器的。我们希望我们的进展将惠及相关的3D研究应用。源代码可在https://github.com/gaocong13/Projective-Spatial-Transformers获取。

相似文献

1
3
A General Differentiable Mesh Renderer for Image-Based 3D Reasoning.一种用于基于图像的3D推理的通用可微网格渲染器。
IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):50-62. doi: 10.1109/TPAMI.2020.3007759. Epub 2021 Dec 7.
6
A Non-Linear Differentiable CNN-Rendering Module for 3D Data Enhancement.用于3D数据增强的非线性可微卷积神经网络渲染模块
IEEE Trans Vis Comput Graph. 2021 Jul;27(7):3238-3249. doi: 10.1109/TVCG.2020.2968062. Epub 2021 May 27.
8
Adaptive Multi-View and Temporal Fusing Transformer for 3D Human Pose Estimation.用于3D人体姿态估计的自适应多视图与时间融合Transformer
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4122-4135. doi: 10.1109/TPAMI.2022.3188716. Epub 2023 Mar 7.

引用本文的文献

6
Mixed Reality Interfaces for Achieving Desired Views with Robotic X-ray Systems.用于通过机器人X射线系统实现所需视图的混合现实接口。
Comput Methods Biomech Biomed Eng Imaging Vis. 2023;11(4):1130-1135. doi: 10.1080/21681163.2022.2154272. Epub 2022 Dec 7.
10
Deep learning-based 2D/3D registration of an atlas to biplanar X-ray images.基于深度学习的图谱到双平面 X 射线图像的 2D/3D 配准。
Int J Comput Assist Radiol Surg. 2022 Jul;17(7):1333-1342. doi: 10.1007/s11548-022-02586-3. Epub 2022 Mar 16.

本文引用的文献

2
Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.基于密集 V 网络的腹部 CT 自动多器官分割。
IEEE Trans Med Imaging. 2018 Aug;37(8):1822-1834. doi: 10.1109/TMI.2018.2806309. Epub 2018 Feb 14.
4
A CNN Regression Approach for Real-Time 2D/3D Registration.一种用于实时 2D/3D 配准的 CNN 回归方法。
IEEE Trans Med Imaging. 2016 May;35(5):1352-1363. doi: 10.1109/TMI.2016.2521800. Epub 2016 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验