Suppr超能文献

Nap1和Kap114共同辅助伴侣H2A-H2B,并促进细胞核中靶向组蛋白的释放。

Nap1 and Kap114 co-chaperone H2A-H2B and facilitate targeted histone release in the nucleus.

作者信息

Fung Ho Yee Joyce, Neisman Ashley B, Bernardes Natalia E, Jiou Jenny, Chook Yuh Min

出版信息

bioRxiv. 2024 Apr 23:2023.05.09.539987. doi: 10.1101/2023.05.09.539987.

Abstract

Core histones are synthesized and processed in the cytoplasm before transport into the nucleus for assembly into nucleosomes; however, they must also be chaperoned as free histones are toxic. The importin Kap114 binds and transports histone H2A-H2B into the yeast nucleus, where RanGTP facilitates H2A-H2B release. Kap114 and H2A-H2B also bind the Nap1 histone chaperone, which is found in both the cytoplasm and the nucleus, but how Nap1 and Kap114 cooperate in H2A-H2B processing and nucleosome assembly has been unclear. To understand these mechanisms, we used biochemical and structural analyses to reveal how Nap1, Kap114, H2A-H2B and RanGTP interact. We show that Kap114, H2A-H2B and a Nap1 dimer (Nap1 ) assemble into a 1:1:1 ternary complex. Cryogenic electron microscopy revealed two distinct Kap114/Nap1 /H2A-H2B structures: one of H2A-H2B sandwiched between Nap1 and Kap114, and another in which Nap1 bound to the Kap114·H2A-H2B complex without contacting H2A-H2B. Another Nap1 ·H2A-H2B·Kap114·Ran structure reveals the nuclear complex. Mutagenesis revealed shared critical interfaces in all three structures. Consistent with structural findings, DNA competition experiments demonstrated that Kap114 and Nap1 together chaperone H2A-H2B better than either protein alone. When RanGTP is present, Kap114's chaperoning activity diminishes. However, the presence of Nap1 within the Nap1 ·H2A-H2B·Kap114·Ran quaternary complex restores its ability to chaperone H2A-H2B. This complex effectively deposits H2A-H2B into nucleosomes. Together, these findings suggest that Kap114 and Nap12 provide a sheltered path from cytoplasm to nucleus, facilitating the transfer of H2A-H2B from Kap114 to Nap1 , ultimately directing its specific deposition into nucleosomes.

摘要

核心组蛋白在细胞质中合成并加工,然后转运到细胞核中组装成核小体;然而,由于游离组蛋白具有毒性,它们也必须有伴侣蛋白陪伴。输入蛋白Kap114结合并将组蛋白H2A - H2B转运到酵母细胞核中,在那里RanGTP促进H2A - H2B的释放。Kap114和H2A - H2B还与Nap1组蛋白伴侣蛋白结合,Nap1在细胞质和细胞核中均有发现,但Nap1和Kap114如何在H2A - H2B加工和核小体组装中协同作用尚不清楚。为了理解这些机制,我们利用生化和结构分析来揭示Nap1、Kap114、H2A - H2B和RanGTP是如何相互作用的。我们发现Kap114、H2A - H2B和一个Nap1二聚体(Nap1₂)组装成一个1:1:1的三元复合物。低温电子显微镜揭示了两种不同的Kap114/Nap1₂/H2A - H2B结构:一种是H2A - H2B夹在Nap1₂和Kap114之间,另一种是Nap1₂与Kap114·H2A - H2B复合物结合但不接触H2A - H2B。另一种Nap1₂·H2A - H2B·Kap114·Ran复合物结构揭示了核复合物。诱变揭示了所有三种结构中共享的关键界面。与结构研究结果一致,DNA竞争实验表明,Kap114和Nap1₂共同陪伴H2A - H2B的能力比单独的任何一种蛋白都要好。当存在RanGTP时,Kap114的陪伴活性降低。然而,在Nap1₂·H2A - H2B·Kap114·Ran四元复合物中存在Nap1₂可恢复其陪伴H2A - H2B的能力。这种复合物有效地将H2A - H2B沉积到核小体中。总之,这些发现表明Kap114和Nap1₂提供了一条从细胞质到细胞核的保护路径,促进H2A - H2B从Kap114转移到Nap1₂,最终指导其特异性沉积到核小体中。

相似文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验