Boţ Radu Ioan, Csetnek Ernö Robert, Nguyen Dang-Khoa
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria Faculty of Mathematics, University of Vienna.
Math Program. 2023;200(1):147-197. doi: 10.1007/s10107-022-01879-4. Epub 2022 Aug 16.
This work aims to minimize a continuously differentiable convex function with Lipschitz continuous gradient under linear equality constraints. The proposed inertial algorithm results from the discretization of the second-order primal-dual dynamical system with asymptotically vanishing damping term addressed by Boţ and Nguyen (J. Differential Equations 303:369-406, 2021), and it is formulated in terms of the Augmented Lagrangian associated with the minimization problem. The general setting we consider for the inertial parameters covers the three classical rules by Nesterov, Chambolle-Dossal and Attouch-Cabot used in the literature to formulate fast gradient methods. For these rules, we obtain in the convex regime convergence rates of order for the primal-dual gap, the feasibility measure, and the objective function value. In addition, we prove that the generated sequence of primal-dual iterates converges to a primal-dual solution in a general setting that covers the two latter rules. This is the first result which provides the convergence of the sequence of iterates generated by a fast algorithm for linearly constrained convex optimization problems without additional assumptions such as strong convexity. We also emphasize that all convergence results of this paper are compatible with the ones obtained in Boţ and Nguyen (J. Differential Equations 303:369-406, 2021) in the continuous setting.
这项工作旨在在线性等式约束下最小化一个具有Lipschitz连续梯度的连续可微凸函数。所提出的惯性算法源于Boţ和Nguyen(《微分方程杂志》303:369 - 406,2021)所研究的具有渐近消失阻尼项的二阶原始 - 对偶动力系统的离散化,并且它是根据与最小化问题相关的增广拉格朗日函数来制定的。我们考虑的惯性参数的一般设置涵盖了文献中用于制定快速梯度方法的Nesterov、Chambolle - Dossal和Attouch - Cabot这三种经典规则。对于这些规则,我们在凸情形下得到了原始 - 对偶间隙、可行性度量以及目标函数值的 阶收敛速率。此外,我们证明了在涵盖后两种规则的一般设置下,所生成的原始 - 对偶迭代序列收敛到一个原始 - 对偶解。这是第一个在没有诸如强凸性等额外假设的情况下,为线性约束凸优化问题的快速算法所生成的迭代序列提供收敛性的结果。我们还强调,本文所有的收敛结果都与Boţ和Nguyen(《微分方程杂志》303:369 - 406,2021)在连续情形下所得到的结果兼容。