Opt Lett. 2022 Nov 15;47(22):5945-5948. doi: 10.1364/OL.478293.
We address the formation of χ topological edge solitons emerging in a topologically nontrivial phase in Su-Schrieffer-Heeger (SSH) waveguide arrays. We consider edge solitons, whose fundamental frequency (FF) component belongs to the topological gap, while the phase mismatch determines whether the second harmonic (SH) component falls into topological or trivial forbidden gaps of the spectrum for the SH wave. Two representative types of edge solitons are found, one of which is thresholdless and bifurcates from the topological edge state in the FF component, while the other exists above a power threshold and emanates from the topological edge state in the SH wave. Both types of soliton can be stable. Their stability, localization degree, and internal structure strongly depend on the phase mismatch between the FF and SH waves. Our results open up new prospects for the control of topologically nontrivial states by parametric wave interactions.
我们研究了在 Su-Schrieffer-Heeger(SSH)波导阵列中拓扑非平庸相出现的 χ 拓扑边孤子的形成。我们考虑了边孤子,其基频(FF)分量属于拓扑带隙,而相位失配对二次谐波(SH)分量落入 SH 波的拓扑或平凡禁带起到决定作用。我们发现了两种代表性的边孤子类型,其中一种是无阈值的,从 FF 分量的拓扑边态分支出来,而另一种则存在于高于功率阈值的地方,从 SH 波的拓扑边态发射出来。这两种孤子都可以是稳定的。它们的稳定性、局域化程度和内部结构强烈依赖于 FF 和 SH 波之间的相位失配。我们的结果为通过参数波相互作用控制拓扑非平凡态开辟了新的前景。