Forest Biology Centre, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan, 61-614, Poland.
Institut National de Recherche Pour Agriculture, Alimentation et Environnement (IN23-RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Université Grenoble Alpes, St Martin-d'Hères, 38402, France.
New Phytol. 2023 Aug;239(3):830-838. doi: 10.1111/nph.18984. Epub 2023 May 23.
The periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual-level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual-plant-level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long-term, individual-plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.
周期性地产生大量种子作物,即结实,是多年生植物中广泛存在的现象。这种行为可以提高植物的繁殖效率,增加适应度,并对食物网产生连锁反应。虽然结实的年际变化是其定义特征,但用于量化这种变异性的方法存在高度争议。常用的变异系数缺乏考虑结实数据的序列相关性的能力,并且容易受到零值的影响,因此对于基于个体水平观测的各种应用,如表型选择、遗传力和气候变化研究,它并不是一个合适的选择,因为这些应用依赖于个体植物水平的数据,这些数据通常包含大量的零值。为了解决这些局限性,我们提出了三个案例研究,并介绍了波动性和周期性,它们通过强调结实中长间隔的重要性,在频域中考虑方差。通过利用欧洲花楸、地中海松、欧洲山毛榉、欧洲栓皮栎和欧洲山毛榉的例子,我们展示了波动性如何在存在零值的情况下,即使在高频和低频都能捕捉到方差的影响,从而改善了对结果的生态解释。长期、个体植物数据集的可用性有望为该领域带来重大进展,但需要适当的分析工具,而新的指标提供了这些工具。