Ward Rachel E, Zhang-Zheng Huanyuan, Abernethy Kate, Adu-Bredu Stephen, Arroyo Luzmilla, Bailey Andrew, Barlow Jos, Berenguer Erika, Chesini-Rossi Liana, Cho Percival, Dahlsjö Cecilia A L, das Neves Eder Carvalho, de Oliveira Sales Bianca, Farfan-Rios William, Ferreira Joice Nunes, Freitag Renata, Girardin Cécile, Huaraca Huasco Walter, Joly Carlos A, Malhi Yadvinder, Marimon Beatriz, Marimon Junior Ben Hur, Morel Alexandra C, Muller-Landau Helene C, Peixoto Karine da Silva, Reis Simone, Riutta Terhi, Salinas Norma, Seixas Marina, Silman Miles R, Kueppers Lara M
Energy and Resources Group, University of California, Berkeley, Berkeley, California, USA.
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK.
Ecol Lett. 2025 Aug;28(8):e70191. doi: 10.1111/ele.70191.
Forest allocation of net primary productivity (NPP) to reproduction (carbon required for flowers, fruits, and seeds) is poorly quantified globally, despite its critical role in forest regeneration and a well-supported trade-off with allocation to growth. Here, we present the first global synthesis of a biometric proxy for forest reproductive allocation (RA) across environmental and stand age gradients from a compiled dataset of 824 observations across 393 sites. We find that ecosystem-scale RA increases ~60% from boreal to tropical forests. Climate shows important non-linear relationships with RA, but is not the sole predictor. Forest age effects are comparable to climate in magnitude (MAT: ß = 0.24, p = 0.021; old growth forest: ß = 0.22, p < 0.001), while metrics of soil fertility show small but significant relationships with RA (soil pH: ß = 0.07, p = 0.001; soil N: ß = -0.07, p = 0.001). These results provide strong evidence that ecosystem-scale RA is mediated by climate, forest age, and soil conditions, and is not a globally fixed fraction of positive NPP as assumed by most vegetation and ecosystem models. Our dataset and findings can be used by modellers to improve predictions of forest regeneration and carbon cycling.
尽管森林净初级生产力(NPP)分配给繁殖(花、果实和种子所需的碳)在全球范围内的量化程度很低,但它在森林更新中起着关键作用,并且与分配给生长的部分之间存在得到充分支持的权衡关系。在此,我们基于一个由393个地点的824次观测组成的汇编数据集,首次对跨环境和林分年龄梯度的森林繁殖分配(RA)的生物统计学替代指标进行了全球综合分析。我们发现,从寒温带森林到热带森林,生态系统尺度的RA增加了约60%。气候与RA呈现出重要的非线性关系,但并非唯一的预测因子。林分年龄效应在量级上与气候相当(年均气温:β = 0.24,p = 0.021;老龄林:β = 0.22,p < 0.001),而土壤肥力指标与RA呈现出虽小但显著的关系(土壤pH值:β = 0.07,p = 0.001;土壤氮:β = -0.07,p = 0.001)。这些结果提供了有力证据,表明生态系统尺度的RA受气候、林分年龄和土壤条件的介导,并非如大多数植被和生态系统模型所假设的那样是正NPP的全球固定比例。我们的数据集和研究结果可供建模者用于改进对森林更新和碳循环的预测。