Department of Network and Data Science, Central European University, Vienna, Austria.
PLoS One. 2023 May 23;18(5):e0286093. doi: 10.1371/journal.pone.0286093. eCollection 2023.
Microblogging sites are important vehicles for the users to obtain information and shape public opinion thus they are arenas of continuous competition for popularity. Most popular topics are usually indicated on ranking lists. In this study, we investigate the public attention dynamics through the Hot Search List (HSL) of the Chinese microblog Sina Weibo, where trending hashtags are ranked based on a multi-dimensional search volume index. We characterize the rank dynamics by the time spent by hashtags on the list, the time of the day they appear there, the rank diversity, and by the ranking trajectories. We show how the circadian rhythm affects the popularity of hashtags, and observe categories of their rank trajectories by a machine learning clustering algorithm. By analyzing patterns of ranking dynamics using various measures, we identify anomalies that are likely to result from the platform provider's intervention into the ranking, including the anchoring of hashtags to certain ranks on the HSL. We propose a simple model of ranking that explains the mechanism of this anchoring effect. We found an over-representation of hashtags related to international politics at 3 out of 4 anchoring ranks on the HSL, indicating possible manipulations of public opinion.
微博客网站是用户获取信息和塑造舆论的重要工具,因此它们是争夺人气的持续竞争场所。最受欢迎的话题通常会出现在排行榜上。在这项研究中,我们通过中国微博客网站新浪的热搜榜(HSL)来研究公众关注度的动态,其中热门话题标签是根据多维搜索量指数进行排名的。我们通过话题标签在榜单上停留的时间、出现的时间、排名多样性以及排名轨迹来描述排名动态。我们展示了生物钟如何影响话题标签的流行度,并通过机器学习聚类算法观察它们的排名轨迹类别。通过使用各种指标分析排名动态模式,我们识别出可能是由于平台提供商干预排名导致的异常情况,包括将话题标签锚定在 HSL 的特定排名上。我们提出了一种简单的排名模型,解释了这种锚定效应的机制。我们发现,在 HSL 的 4 个锚定排名中,有 3 个与国际政治相关的话题标签出现过度代表,这表明可能存在操纵舆论的行为。