Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Canada.
J Pharm Pharm Sci. 2018;21(1s):32s-47s. doi: 10.18433/jpps29788.
Pharmacokinetic (PK) data are generally derived from blood samples withdrawn serially over a defined period after dosing. In small animals, blood sampling after dosing presents technical difficulties, particularly when short time intervals and frequent sampling are required. Positron emission tomography (PET) is a non-invasive functional imaging technique that can provide semi-quantitative temporal data for defined volume regions of interest (vROI), to support kinetic analyses in blood and other tissues. The application of preclinical small-animal PET to determine and compare PK parameters for [18F]FDG and [18F]FAZA, radiopharmaceuticals used clinically for assessing glucose metabolism and hypoxic fractions, respectively, in the same mammary EMT6 tumor-bearing mouse model, is reported here.
Two study groups were used: normal BALB/c mice under isoflurane anesthesia were intravenously injected with either [18F]FDG or [18F]FAZA. For the first group, blood-sampling by tail artery puncture was used to collect blood samples which were then analyzed with Radio-microTLC. Dynamic PET experiments were performed with the second group of mice and analyzed for blood input function and tumor uptake utilizing a modified two compartment kinetic model. Heart and inferior vena cava vROIs were sampled to obtain image-derived data. PK parameters were calculated from blood samples and image-derived data. Time-activity curves (TACs) were also generated over regions of liver, kidney and urinary bladder to depict clearance profiles for each radiotracer.
PK values generated by classical blood sampling and PET image-derived analysis were comparable to each other for both radiotracers. Heart vROI data were suitable for analysis of [18F]FAZA kinetics, but metabolic uptake of radioactivity mandated the use of inferior vena cava vROIs for [18F]FDG analysis. While clearance (CL) and blood half-life (t½) were similar for both [18F]FDG and [18F]FAZA for both sampling methods, volume of distribution yielded larger differences, indicative of limitations such as partial volume effects within quantitative image-derived data. [18F]FDG underwent faster blood clearance and had a shorter blood half-life than [18F]FAZA. Kinetic analysis of tumor uptake from PET image data showed higher uptake and longer tumor tissue retention of [18F]FDG, indicative of the tumor's glucose metabolism rate, versus lower tumor uptake and retention of [18F]FAZA. While [18F]FAZA possesses a somewhat greater hepatobiliary clearance , [18F]FDG clears faster through the renal system which results in faster radioactivity accumulation in the urinary bladder.
The present study provides a working example of the applicability of functional PET imaging as a suitable tool to determine PK parameters in small animals. The comparative analysis in the current study demonstrates that it is feasible to use [18F]FDG PET and [18F]FAZA PET in the same model to analyze their blood PK parameters, and to estimate kinetic parameters for these tracers in tumor. This non-invasive imaging-based determination of tissue kinetic parameters facilitates translation from pre-clinical to clinical phases of drug development. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
药代动力学(PK)数据通常是从给药后一段时间内连续从血液样本中得出的。在小动物中,给药后的血液采样存在技术困难,特别是当需要短时间间隔和频繁采样时。正电子发射断层扫描(PET)是一种非侵入性的功能成像技术,可提供定义的感兴趣区(vROI)的半定量时间数据,以支持血液和其他组织中的动力学分析。本文报道了将临床前小动物 PET 应用于确定和比较 [18F]FDG 和 [18F]FAZA 的 PK 参数,这两种放射性药物分别用于临床评估葡萄糖代谢和缺氧分数。
使用两组研究:在异氟烷麻醉下的正常 BALB/c 小鼠静脉注射 [18F]FDG 或 [18F]FAZA。对于第一组,通过尾动脉穿刺采集血样,然后用放射性微 TLC 进行分析。对第二组小鼠进行动态 PET 实验,并利用改良的两室动力学模型分析血液输入函数和肿瘤摄取。采集心脏和下腔静脉 vROI 样本以获得图像衍生数据。从血液样本和图像衍生数据中计算 PK 参数。还生成了肝脏、肾脏和膀胱的时间-活性曲线(TAC),以描绘每个示踪剂的清除曲线。
两种示踪剂的经典血液采样和 PET 图像衍生分析生成的 PK 值彼此相当。心脏 vROI 数据适用于 [18F]FAZA 动力学分析,但放射性摄取的代谢需要使用下腔静脉 vROI 进行 [18F]FDG 分析。虽然两种采样方法的 [18F]FDG 和 [18F]FAZA 的清除率(CL)和血液半衰期(t½)相似,但分布体积产生了更大的差异,表明定量图像衍生数据中存在部分体积效应等局限性。[18F]FDG 比 [18F]FAZA 具有更快的血液清除率和更短的血液半衰期。来自 PET 图像数据的肿瘤摄取的动力学分析显示,[18F]FDG 的摄取更高,肿瘤组织保留时间更长,表明肿瘤的葡萄糖代谢率较高,而 [18F]FAZA 的肿瘤摄取和保留较低。虽然 [18F]FAZA 具有更大的肝胆清除率,但 [18F]FDG 通过肾脏系统更快清除,导致尿液中更快积聚放射性。
本研究提供了一个实用的例子,说明了功能 PET 成像作为一种合适的工具,可用于确定小动物中的 PK 参数。本研究的比较分析表明,在同一模型中使用 [18F]FDG PET 和 [18F]FAZA PET 来分析它们的血液 PK 参数并估计这些示踪剂在肿瘤中的动力学参数是可行的。这种基于非侵入性成像的组织动力学参数的测定有助于从药物开发的临床前阶段向临床阶段的转化。本文接受发表后评审。注册读者(请参阅“读者须知”)可以在本期内容的页面上点击摘要进行评论。