Ramani Namrata, Figg C Adrian, Anderson Alex J, Winegar Peter H, Oh EunBi, Ebrahimi Sasha B, Samanta Devleena, Mirkin Chad A
Department of Materials Science and Engineering, Northwestern University, 2220 Campus, Drive, Evanston, IL, 60208, USA.
International Institute for Nanotechnology, Northwestern University, 2190 Campus Drive, Evanston, IL, 60208, USA.
Adv Mater. 2023 Sep;35(36):e2301086. doi: 10.1002/adma.202301086. Epub 2023 Jul 21.
Patterning biomolecules in synthetic hydrogels offers routes to visualize and learn how spatially-encoded cues modulate cell behavior (e.g., proliferation, differentiation, migration, and apoptosis). However, investigating the role of multiple, spatially defined biochemical cues within a single hydrogel matrix remains challenging because of the limited number of orthogonal bioconjugation reactions available for patterning. Herein, a method to pattern multiple oligonucleotide sequences in hydrogels using thiol-yne photochemistry is introduced. Rapid hydrogel photopatterning of hydrogels with micron resolution DNA features (≈1.5 µm) and control over DNA density are achieved over centimeter-scale areas using mask-free digital photolithography. Sequence-specific DNA interactions are then used to reversibly tether biomolecules to patterned regions, demonstrating chemical control over individual patterned domains. Last, localized cell signaling is shown using patterned protein-DNA conjugates to selectively activate cells on patterned areas. Overall, this work introduces a synthetic method to achieve multiplexed micron resolution patterns of biomolecules onto hydrogel scaffolds, providing a platform to study complex spatially-encoded cellular signaling environments.
在合成水凝胶中对生物分子进行图案化处理,为可视化以及了解空间编码线索如何调节细胞行为(例如增殖、分化、迁移和凋亡)提供了途径。然而,由于可用于图案化的正交生物共轭反应数量有限,在单个水凝胶基质中研究多种空间定义的生化线索的作用仍然具有挑战性。在此,介绍一种使用硫醇-炔光化学在水凝胶中对多个寡核苷酸序列进行图案化的方法。通过无掩膜数字光刻技术,在厘米级区域实现了具有微米分辨率DNA特征(约1.5 µm)的水凝胶快速光图案化以及对DNA密度的控制。然后利用序列特异性DNA相互作用将生物分子可逆地连接到图案化区域,证明了对单个图案化区域的化学控制。最后,使用图案化的蛋白质-DNA共轭物展示局部细胞信号传导,以选择性激活图案化区域上的细胞。总体而言,这项工作引入了一种合成方法,可在水凝胶支架上实现生物分子的多重微米分辨率图案,为研究复杂的空间编码细胞信号环境提供了一个平台。