Opt Lett. 2023 Apr 1;48(7):1886-1889. doi: 10.1364/OL.487145.
In an orbital angular momentum-shift keying free-space optical (OAM-SK FSO) communication system, precisely recognizing OAM superposed modes at the receiver site is crucial to improve the communication capacity. While deep learning (DL) provides an effective method for OAM demodulation, with the increase of OAM modes, the dimension explosion of OAM superstates results in unacceptable costs on training the DL model. Here, we demonstrate a few-shot-learning-based demodulator to achieve a 65,536-ary OAM-SK FSO communication system. By learning from only 256 classes of samples, the remaining 65,280 unseen classes can be predicted with an accuracy of more than 94%, which saves a large number of resources on data preparation and model training. Based on this demodulator, we first realize the single transmission of a color pixel and the single transmission of two gray scale pixels on the application of colorful-image-transmission in free space with an average error rate less than 0.023%. This work may provide a new, to the best of our knowledge, approach for big data capacity in optical communication systems.
在轨道角动量移位键控自由空间光(OAM-SK FSO)通信系统中,精确识别接收器处的 OAM 叠加模式对于提高通信容量至关重要。虽然深度学习(DL)为 OAM 解调提供了一种有效方法,但随着 OAM 模式的增加,OAM 超态的维度爆炸导致训练 DL 模型的成本不可接受。在这里,我们展示了一种基于少样本学习的解调器,以实现 65536 进制 OAM-SK FSO 通信系统。通过仅学习 256 类样本,就可以以超过 94%的准确率预测其余 65280 个未见类,从而节省了大量的数据准备和模型训练资源。基于这个解调器,我们首次在自由空间中实现了彩色图像传输的单像素传输和两个灰度像素的单像素传输,平均误码率低于 0.023%。这项工作可能为光通信系统中的大数据容量提供了一种新的方法。