Han Zheng, Chen Xiao, Wang Yiquan, Cai Yuanyuan
Opt Express. 2024 Mar 25;32(7):11629-11642. doi: 10.1364/OE.515138.
The perturbation of atmosphere turbulence is a significant challenge in orbital angular momentum shift keying-based free space optical communication (OAM-SK-FSO). In this study, we propose an adaptive optical demodulation system based on deep learning techniques. A conditional convolutional GAN (ccGAN) network is applied to recover the distorted intensity pattern and assign it to its specified class. Compared to existing methods based on convolutional neural networks (CNNs), our network demonstrates powerful capability in recovering the distorted light beam, resulting in a higher recognition accuracy rate under the same conditions. The average recognition accuracy rates are 0.9928, 0.9795 and 0.9490 when the atmospheric refractive index structure constant $C_n^2$ is set at 3 × 10, 4.45 × 10, 6 × 10m, respectively. The ccGAN network provides a promising potential tool for free space optical communication.
大气湍流的扰动是基于轨道角动量移位键控的自由空间光通信(OAM-SK-FSO)中的一个重大挑战。在本研究中,我们提出了一种基于深度学习技术的自适应光解调系统。应用条件卷积生成对抗网络(ccGAN)来恢复失真的强度模式并将其分配到指定类别。与基于卷积神经网络(CNN)的现有方法相比,我们的网络在恢复失真光束方面展现出强大能力,在相同条件下具有更高的识别准确率。当大气折射率结构常数$C_n^2$分别设置为3×10、4.45×10、6×10m时,平均识别准确率分别为0.9928、0.9795和0.9490。ccGAN网络为自由空间光通信提供了一种有前景的潜在工具。