文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

创伤性脊髓损伤后第一年个体免疫表型分析:纵向分析。

Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis.

机构信息

The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA.

Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA.

出版信息

J Neurotrauma. 2023 Dec;40(23-24):2621-2637. doi: 10.1089/neu.2022.0500. Epub 2023 Jul 19.


DOI:10.1089/neu.2022.0500
PMID:37221869
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10722895/
Abstract

Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56, CD56 NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.

摘要

患有 SCI 的个体受到免疫系统变化的严重影响,导致感染风险增加和持续的全身炎症。虽然最近的数据支持 SCI 后免疫变化在 SCI 生活的急性和慢性阶段有所不同,但人类可用的免疫表型有限。为了描述第一年的动态分子和细胞免疫表型,我们评估了 12 名 SCI 个体在 0-3 天和 3、6 和 12 个月后(MPI)与 23 名未受伤个体(对照)的血液样本的 RNA(批量 RNA 测序)、蛋白质和流式细胞术(FACS)图谱。与对照组相比,我们在患有 SCI 的个体中发现了 967 个差异表达(DE)基因(FDR <0.001)。在最初的 6MPI 内,我们检测到 NK 细胞基因的表达减少,与 12MPI 时存在的 CD56、CD56NK 细胞频率降低一致。在 6MPI 以上,我们观察到与炎症相关的基因(例如 HMGB1、Toll 样受体信号)的表达增加和延长,以及单核细胞的频率急性扩张。经典的 T 细胞相关 DE 基因(例如 FOXP3、TCF7、CD4)在最初的 6MPI 期间上调,并且在 3-12MPI 时激活 T 细胞的频率增加。神经损伤严重程度反映在 SCI 后任何时间的全血基因表达谱中,验证了持续的“神经源”印记。总体而言,当比较运动完全与运动不完全 SCI 时,会出现 2876 个 DE 基因(ANOVA,FDR <0.05),包括与中性粒细胞、炎症和感染相关的基因。总之,我们在人类中确定了一种动态的免疫表型,包括分子和细胞变化,这可能为减少炎症、改善免疫或作为损伤严重程度的候选生物标志物提供潜在目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/3ed42af0e1b0/neu.2022.0500_figure4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/2aa98c46b057/neu.2022.0500_figure1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/74447c17702b/neu.2022.0500_figure2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/69e13c4ba8da/neu.2022.0500_figure3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/3ed42af0e1b0/neu.2022.0500_figure4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/2aa98c46b057/neu.2022.0500_figure1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/74447c17702b/neu.2022.0500_figure2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/69e13c4ba8da/neu.2022.0500_figure3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f79/10722895/3ed42af0e1b0/neu.2022.0500_figure4.jpg

相似文献

[1]
Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis.

J Neurotrauma. 2023-12

[2]
Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression.

J Neurotrauma. 2018-4-5

[3]
Systemic gene expression profiles according to pain types in individuals with chronic spinal cord injury.

Mol Pain. 2021

[4]
Identification of distinct monocyte phenotypes and correlation with circulating cytokine profiles in acute response to spinal cord injury: a pilot study.

PM R. 2014-4

[5]
Treadmill training improves respiratory function in rats after spinal cord injury by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway.

Neurosci Lett. 2022-6-21

[6]
High-Mobility Group Box 1 (HMGB1) Is Elevated Systemically in Persons with Acute or Chronic Traumatic Spinal Cord Injury.

J Neurotrauma. 2017-2

[7]
RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level.

PLoS One. 2013-8-9

[8]
TMEM176A and TMEM176B Are Candidate Regulators of Inhibition of Dendritic Cell Maturation and Function after Chronic Spinal Cord Injury.

J Neurotrauma. 2020-2-1

[9]
High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation.

Brain Behav Immun. 2017-11-23

[10]
Altered Circulating Immune Cell Distribution in Traumatic Spinal Cord Injury Patients in Relation to Clinical Parameters.

Front Immunol. 2022

引用本文的文献

[1]
Exploring the Landscape of Biomarkers in Spinal Cord Injury.

Top Spinal Cord Inj Rehabil. 2025

[2]
Multifaceted Pathophysiology and Secondary Complications of Chronic Spinal Cord Injury: Focus on Pressure Injury.

J Clin Med. 2025-2-26

[3]
A multi-analyte blood test for acute spinal cord injury.

J Clin Invest. 2025-3-3

[4]
Peripheral immune reactions following human traumatic spinal cord injury: the interplay of immune activation and suppression.

Front Immunol. 2024-11-27

本文引用的文献

[1]
Spinal electrical stimulation to improve sympathetic autonomic functions needed for movement and exercise after spinal cord injury: a scoping clinical review.

J Neurophysiol. 2022-9-1

[2]
Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design.

Phys Ther. 2022-1-1

[3]
Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury.

Curr Opin Neurol. 2021-12-1

[4]
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury.

Mol Cell Proteomics. 2021

[5]
Diagnostic blood RNA profiles for human acute spinal cord injury.

J Exp Med. 2021-3-1

[6]
Characterization of Cerebrospinal Fluid Ubiquitin C-Terminal Hydrolase L1 as a Biomarker of Human Acute Traumatic Spinal Cord Injury.

J Neurotrauma. 2021-8-1

[7]
Prognostic value of early leukocyte fluctuations for recovery from traumatic spinal cord injury.

Clin Transl Med. 2021-1

[8]
Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury.

IEEE Trans Neural Syst Rehabil Eng. 2021

[9]
The neuroanatomical-functional paradox in spinal cord injury.

Nat Rev Neurol. 2021-1

[10]
Heart rate and blood pressure response improve the prediction of orthostatic cardiovascular dysregulation in persons with chronic spinal cord injury.

Physiol Rep. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索