Suppr超能文献

协同结合 ATP 和核酸需要 UPF1 的 ATP 酶功能循环。

Synergistic Binding of ATP and Nucleic Acids Necessitates UPF1's ATPase Functional Cycle.

机构信息

Research Center for Pharmacoinformatics, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

出版信息

J Chem Inf Model. 2023 Jun 12;63(11):3474-3485. doi: 10.1021/acs.jcim.3c00247. Epub 2023 May 24.

Abstract

UPF1 is a core protein in the nonsense mRNA degradation (NMD) surveillance pathway that degrades aberrant mRNA. UPF1 has both ATPase and RNA helicase activities, but it exhibits mutually exclusive binding of ATP and RNA. This suggests intricate allosteric coupling between ATP and RNA binding that remains unresolved. In this study, we used molecular dynamics simulations and dynamic network analyses to probe the dynamics and free energy landscapes covering UPF1 crystal structures resolved in the Apo state, the ATP bound state, and the ATP-RNA bound (catalytic transition) state. Free energy calculations show that in the presence of ATP and RNA, the transition from the Apo state to the ATP bound state is an uphill process but becomes a downhill process when transitioning to the catalytic transition state. Allostery potential analyses reveal that the Apo and catalytic transition states are mutually allosterically activated toward each other, reflecting the intrinsic ATPase function of UPF1. The Apo state is also allosterically activated toward the ATP bound state. However, binding ATP alone leads to an allosterically trapped state that is difficult to revert to either the Apo or the catalytic transition state. The high allostery potential of Apo UPF1 toward different states results in a "first come, first served" mechanism that requires the synergistic binding of ATP and RNA to drive the ATPase cycle. Our results reconcile UPF1's ATPase and RNA helicase activities within an allostery framework and may apply to other SF1 helicases, as we demonstrate that UPF1's allostery signaling pathways prefer the RecA1 domain over the equally fold-conserved RecA2 domain, and this preference coincides with higher sequence conservation in the RecA1 domain across typical human SF1 helicases.

摘要

UPF1 是一种在无意义 mRNA 降解(NMD)监测途径中起核心作用的蛋白,可降解异常的 mRNA。UPF1 具有 ATP 酶和 RNA 解旋酶活性,但表现出 ATP 和 RNA 结合的相互排斥。这表明 ATP 和 RNA 结合之间存在复杂的变构偶联,但尚未得到解决。在这项研究中,我们使用分子动力学模拟和动态网络分析来探测 UPF1 晶体结构在 Apo 状态、ATP 结合状态和 ATP-RNA 结合(催化过渡)状态下的动力学和自由能景观。自由能计算表明,在存在 ATP 和 RNA 的情况下,从 Apo 状态向 ATP 结合状态的转变是一个上坡过程,但当过渡到催化过渡状态时,它变成了一个下坡过程。变构潜力分析表明,Apo 和催化过渡状态彼此相互变构激活,反映了 UPF1 的内在 ATP 酶功能。Apo 状态也向 ATP 结合状态变构激活。然而,单独结合 ATP 会导致变构捕获状态,难以恢复到 Apo 或催化过渡状态。Apo UPF1 对不同状态的高变构潜力导致了一种“先来先服务”的机制,需要 ATP 和 RNA 的协同结合来驱动 ATP 酶循环。我们的结果在变构框架内协调了 UPF1 的 ATP 酶和 RNA 解旋酶活性,并且可能适用于其他 SF1 解旋酶,因为我们证明 UPF1 的变构信号通路优先选择 RecA1 结构域而不是同样折叠保守的 RecA2 结构域,并且这种偏好与典型的人类 SF1 解旋酶中 RecA1 结构域的更高序列保守性一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验