Suppr超能文献

新型细菌转移 RNA 对遗传密码的误译。

Mistranslation of the genetic code by a new family of bacterial transfer RNAs.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Microbiology, Technical University of Braunschweig, Braunschweig, Germany.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.

出版信息

J Biol Chem. 2023 Jul;299(7):104852. doi: 10.1016/j.jbc.2023.104852. Epub 2023 May 22.

Abstract

The correct coupling of amino acids with transfer RNAs (tRNAs) is vital for translating genetic information into functional proteins. Errors during this process lead to mistranslation, where a codon is translated using the wrong amino acid. While unregulated and prolonged mistranslation is often toxic, growing evidence suggests that organisms, from bacteria to humans, can induce and use mistranslation as a mechanism to overcome unfavorable environmental conditions. Most known cases of mistranslation are caused by translation factors with poor substrate specificity or when substrate discrimination is sensitive to molecular changes such as mutations or posttranslational modifications. Here we report two novel families of tRNAs, encoded by bacteria from the Streptomyces and Kitasatospora genera, that adopted dual identities by integrating the anticodons AUU (for Asn) or AGU (for Thr) into the structure of a distinct proline tRNA. These tRNAs are typically encoded next to a full-length or truncated version of a distinct isoform of bacterial-type prolyl-tRNA synthetase. Using two protein reporters, we showed that these tRNAs translate asparagine and threonine codons with proline. Moreover, when expressed in Escherichia coli, the tRNAs cause varying growth defects due to global Asn-to-Pro and Thr-to-Pro mutations. Yet, proteome-wide substitutions of Asn with Pro induced by tRNA expression increased cell tolerance to the antibiotic carbenicillin, indicating that Pro mistranslation can be beneficial under certain conditions. Collectively, our results significantly expand the catalog of organisms known to possess dedicated mistranslation machinery and support the concept that mistranslation is a mechanism for cellular resiliency against environmental stress.

摘要

正确地将氨基酸与转移 RNA(tRNA)偶联对于将遗传信息翻译成功能性蛋白质至关重要。在这个过程中出现错误会导致翻译错误,即使用错误的氨基酸翻译密码子。虽然不受调节和延长的翻译错误通常是有毒的,但越来越多的证据表明,从细菌到人类的生物体可以诱导并使用翻译错误作为一种机制来克服不利的环境条件。大多数已知的翻译错误是由翻译因子引起的,这些因子对底物的特异性较差,或者当底物的区分对分子变化(如突变或翻译后修饰)敏感时。在这里,我们报告了两种新型的 tRNA,它们由来自链霉菌属和小单孢菌属的细菌编码,通过将反密码子 AUU(用于天冬酰胺)或 AGU(用于苏氨酸)整合到独特的脯氨酸 tRNA 结构中,从而获得了双重身份。这些 tRNA 通常编码在全长或截短的细菌型脯氨酰-tRNA 合成酶的独特同工型旁边。使用两种蛋白质报告物,我们表明这些 tRNA 可以用脯氨酸翻译天冬酰胺和苏氨酸密码子。此外,当在大肠杆菌中表达时,由于全局 Asn 到 Pro 和 Thr 到 Pro 突变,这些 tRNA 会导致不同的生长缺陷。然而,tRNA 表达诱导的天冬酰胺到脯氨酸的全蛋白质组取代增加了细胞对卡那霉素的耐受性,表明在某些条件下 Pro 翻译错误可能是有益的。总的来说,我们的结果大大扩展了已知具有专用翻译错误机制的生物体目录,并支持翻译错误是细胞对环境压力的弹性机制的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a24/10404621/804cf65f9947/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验