Suppr超能文献

基于密度泛函理论的协议,用于计算用于水相氧化还原靶向液流电池的第一行过渡金属配合物的氧化还原电位。

Density Functional Theory-Based Protocol to Calculate the Redox Potentials of First-row Transition Metal Complexes for Aqueous Redox Targeting Flow Batteries.

作者信息

Rahbani Noura, de Silva Piotr, Baudrin Emmanuel

机构信息

Laboratoire de Réactivité et Chimie des Solides, CNRS UMR7314, Université de Picardie Jules Verne, 33 Rue St-Leu, 80039, Amiens, Cedex, France.

Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800, Kongens Lyngby, Copenhagen, Denmark.

出版信息

ChemSusChem. 2023 Sep 22;16(18):e202300482. doi: 10.1002/cssc.202300482. Epub 2023 Jul 18.

Abstract

Transition metal complexes are a promising class of redox mediators for targeting redox flow batteries due to the tunability of their electrochemical potentials. However, reliable time-efficient tools for the prediction of their reduction potentials are needed. In this work, we establish a suitable density functional theory protocol for their prediction using an initial experimental data set of aqueous iron complexes with bidentate ligands. The approach is then cross-validated using different complexes found in the redox-flow literature. We find that the solvation model affects the prediction accuracy more than the functional or basis set. The smallest errors are obtained using the COSMO-RS solvation model (mean average error (MAE)=0.24 V). With implicit solvation models, a general deviation from experimental results is observed. For a set of similar ligands, they can be corrected using simple linear regression (MAE=0.051 V for the initial set of iron complexes).

摘要

过渡金属配合物因其电化学势的可调性,是一类很有前景的用于氧化还原液流电池的氧化还原介质。然而,需要可靠且高效的工具来预测它们的还原电位。在这项工作中,我们使用含双齿配体的水性铁配合物的初始实验数据集,建立了一种适用于预测其还原电位的密度泛函理论方法。然后,使用氧化还原液流文献中发现的不同配合物对该方法进行交叉验证。我们发现,溶剂化模型对预测准确性的影响大于泛函或基组。使用COSMO-RS溶剂化模型可获得最小误差(平均绝对误差(MAE)=0.24 V)。对于隐式溶剂化模型,观察到与实验结果存在一般偏差。对于一组相似的配体,可使用简单线性回归进行校正(对于初始的铁配合物集,MAE=0.051 V)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验