SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
Genetics. 2023 Oct 4;225(2). doi: 10.1093/genetics/iyad092.
We construct a reliable estimation method for evolutionary parameters within the Wright-Fisher model, which describes changes in allele frequencies due to selection and genetic drift, from time-series data. Such data exist for biological populations, for example via artificial evolution experiments, and for the cultural evolution of behavior, such as linguistic corpora that document historical usage of different words with similar meanings. Our method of analysis builds on a Beta-with-Spikes approximation to the distribution of allele frequencies predicted by the Wright-Fisher model. We introduce a self-contained scheme for estimating parameters in the approximation, and demonstrate its robustness with synthetic data, especially in the strong-selection and near-extinction regimes where previous approaches fail. We further apply the method to allele frequency data for baker's yeast (Saccharomyces cerevisiae), finding a significant signal of selection in cases where independent evidence supports such a conclusion. We further demonstrate the possibility of detecting time points at which evolutionary parameters change in the context of a historical spelling reform in the Spanish language.
我们构建了一种可靠的方法,用于从时间序列数据中估计 Wright-Fisher 模型内的进化参数,该模型描述了由于选择和遗传漂变导致的等位基因频率变化。这种数据存在于生物群体中,例如通过人工进化实验,以及行为的文化进化中,例如记录具有相似含义的不同单词的历史用法的语言语料库。我们的分析方法基于对 Wright-Fisher 模型预测的等位基因频率分布的 Beta-with-Spikes 逼近。我们引入了一种独立的方法来估计逼近中的参数,并通过合成数据证明了其稳健性,尤其是在先前方法失败的强选择和接近灭绝的情况下。我们进一步将该方法应用于面包酵母(酿酒酵母)的等位基因频率数据,在有独立证据支持此类结论的情况下,发现了选择的显著信号。我们进一步展示了在西班牙语历史拼写改革的背景下检测进化参数变化时间点的可能性。