Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts.
Department of Genetics, Harvard Medical School, Boston, Massachusetts.
Curr Protoc. 2023 May;3(5):e779. doi: 10.1002/cpz1.779.
Microtubules, polymers of α, β-tubulin heterodimers, are organized into multi-microtubule arrays for diverse cellular functions. The dynamic properties of microtubule arrays govern their structural and functional properties. While numerous insights into the biophysical mechanisms underlying microtubule organization have been gleaned from in vitro reconstitution studies, the assays are largely restricted to visualization of single or pairs of microtubules. Thus, the dynamic processes underlying the remodeling of multi-microtubule arrays remain poorly understood. Recent work shows that Atomic Force Microscopy (AFM) enables the visualization of nanoscale dynamics within multi-microtubule 2D arrays. In this assay, electrostatic interactions permit the non-specific adsorption of microtubule arrays to mica. AFM imaging in tapping mode, a gentle method of imaging, allows the visualization of microtubules and protofilaments without sample damage. The height information captured by AFM imaging enables the tracking of structural changes in microtubules and protofilaments within multi-microtubule arrays over time. The experimental data from the method described here reveal previously unseen modes of nanoscale dynamics in microtubule bundles formed by the microtubule-crosslinking protein PRC1 in the presence of the depolymerase MCAK. The observations demonstrate the potential of AFM imaging in transforming our understanding of the fundamental cellular process by which multi-microtubule arrays are dynamically assembled and disassembled. © 2023 Wiley Periodicals LLC. Basic Protocol: Sample preparation and real-time visualization of microtubule arrays by atomic force microscopy Alternate Protocol: Protocol for coating surface with poly-L-lysine and immobilizing microtubules.
微管是由α、β-微管蛋白异二聚体组成的多聚体,它们被组织成多微管阵列,以执行各种细胞功能。微管阵列的动态特性决定了它们的结构和功能特性。虽然通过体外重组研究已经获得了许多关于微管组织背后的生物物理机制的见解,但这些测定方法主要局限于对单个或成对微管的可视化。因此,多微管阵列重构背后的动态过程仍未得到很好的理解。最近的工作表明,原子力显微镜(AFM)能够可视化多微管 2D 阵列中的纳米级动力学。在该测定中,静电相互作用允许微管阵列非特异性吸附到云母上。在轻敲模式下进行 AFM 成像,这是一种温和的成像方法,可在不损坏样品的情况下可视化微管和原纤维。AFM 成像捕获的高度信息可用于跟踪多微管阵列中微管和原纤维随时间的结构变化。该方法的实验数据揭示了以前在微管交联蛋白 PRC1 存在于解聚酶 MCAK 的情况下形成的微管束中纳米级动力学的新的未被发现的模式。这些观察结果表明,AFM 成像有可能改变我们对多微管阵列动态组装和拆卸这一基本细胞过程的理解。©2023Wiley Periodicals LLC. 基本方案:通过原子力显微镜实时可视化微管阵列的样品制备 备选方案:用聚-L-赖氨酸涂覆表面并固定微管的方案。