Suppr超能文献

人 β-微管蛋白同工型可以调节微管原丝数量和稳定性。

Human β-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability.

机构信息

Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.

出版信息

Dev Cell. 2018 Oct 22;47(2):175-190.e5. doi: 10.1016/j.devcel.2018.08.014. Epub 2018 Sep 20.

Abstract

Cell biological studies have shown that protofilament number, a fundamental feature of microtubules, can correlate with the expression of different tubulin isotypes. However, it is not known if tubulin isotypes directly control this basic microtubule property. Here, we report high-resolution cryo-EM reconstructions (3.5-3.65 Å) of purified human α1B/β3 and α1B/β2B microtubules and find that the β-tubulin isotype can determine protofilament number. Comparisons of atomic models of 13- and 14-protofilament microtubules reveal how tubulin subunit plasticity, manifested in "accordion-like" distributed structural changes, can accommodate distinct lattice organizations. Furthermore, compared to α1B/β3 microtubules, α1B/β2B filaments are more stable to passive disassembly and against depolymerization by MCAK or chTOG, microtubule-associated proteins with distinct mechanisms of action. Mixing tubulin isotypes in different proportions results in microtubules with protofilament numbers and stabilities intermediate to those of isotypically pure filaments. Together, our findings indicate that microtubule protofilament number and stability can be controlled through β-tubulin isotype composition.

摘要

细胞生物学研究表明,微管的基本特征——原丝数量与不同微管蛋白亚型的表达有关。然而,目前尚不清楚微管蛋白亚型是否直接控制这一基本的微管特性。在这里,我们报道了纯化的人源α1B/β3 和 α1B/β2B 微管的高分辨率 cryo-EM 重构(3.5-3.65Å),并发现β-微管蛋白亚型可以决定原丝数量。13 原丝和 14 原丝微管的原子模型比较揭示了微管蛋白亚基的可塑性,表现在“手风琴样”的分布结构变化,可以适应不同的晶格组织。此外,与α1B/β3 微管相比,α1B/β2B 微管对 MCAK 或 chTOG 的被动解聚以及去聚合具有更高的稳定性,MCAK 和 chTOG 是具有不同作用机制的微管相关蛋白。以不同比例混合微管蛋白亚型会导致原丝数量和稳定性处于同型纯丝之间的中间状态。综上所述,我们的研究结果表明,微管原丝数量和稳定性可以通过β-微管蛋白亚型组成来控制。

相似文献

1
Human β-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability.
Dev Cell. 2018 Oct 22;47(2):175-190.e5. doi: 10.1016/j.devcel.2018.08.014. Epub 2018 Sep 20.
2
Microtubule structure at improved resolution.
Biochemistry. 2001 Jul 10;40(27):8000-8. doi: 10.1021/bi010343p.
4
Tubulin isoform composition tunes microtubule dynamics.
Mol Biol Cell. 2017 Dec 1;28(25):3564-3572. doi: 10.1091/mbc.E17-02-0124. Epub 2017 Oct 11.
5
Straight GDP-tubulin protofilaments form in the presence of taxol.
Curr Biol. 2007 Oct 23;17(20):1765-70. doi: 10.1016/j.cub.2007.08.063. Epub 2007 Oct 4.
6
EB1 interacts with outwardly curved and straight regions of the microtubule lattice.
Nat Cell Biol. 2016 Oct;18(10):1102-8. doi: 10.1038/ncb3412. Epub 2016 Sep 12.
8
Tipping microtubule dynamics, one protofilament at a time.
Curr Opin Cell Biol. 2018 Feb;50:86-93. doi: 10.1016/j.ceb.2018.02.015. Epub 2018 Mar 21.
9
Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
J Cell Biol. 2012 Aug 6;198(3):315-22. doi: 10.1083/jcb.201201161. Epub 2012 Jul 30.
10
Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
Mol Biol Cell. 2014 Jan;25(2):257-66. doi: 10.1091/mbc.E13-07-0387. Epub 2013 Nov 13.

引用本文的文献

1
A tubulin-MAPKKK pathway engages tubulin isotype interaction for neuroprotection.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2507208122. doi: 10.1073/pnas.2507208122. Epub 2025 Aug 14.
3
4
Application of temperature replica exchange molecular dynamics: Structure of mitotic spindle-associated protein SHE1 and its binding to dynein.
Comput Struct Biotechnol J. 2025 May 20;27:2359-2374. doi: 10.1016/j.csbj.2025.05.024. eCollection 2025.
5
Alpha-tubulin tails regulate axoneme differentiation.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2414731122. doi: 10.1073/pnas.2414731122. Epub 2025 Apr 8.
7
Structural switching of tubulin in the microtubule lattice.
Biochem Soc Trans. 2025 Feb 5;53(1):BST20240360. doi: 10.1042/BST20240360.
8
β3 accelerates microtubule plus end maturation through a divergent lateral interface.
Mol Biol Cell. 2025 Apr 1;36(4):ar36. doi: 10.1091/mbc.E24-08-0354. Epub 2025 Jan 15.
9
Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.
Dev Cell. 2025 Mar 24;60(6):885-900.e5. doi: 10.1016/j.devcel.2024.12.002. Epub 2024 Dec 24.

本文引用的文献

1
Microtubules soften due to cross-sectional flattening.
Elife. 2018 Jun 1;7:e34695. doi: 10.7554/eLife.34695.
2
Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s.
Nat Commun. 2018 Apr 25;9(1):1662. doi: 10.1038/s41467-018-04044-8.
4
A microtubule bestiary: structural diversity in tubulin polymers.
Mol Biol Cell. 2017 Nov 1;28(22):2924-2931. doi: 10.1091/mbc.E16-05-0271.
5
Microtubules acquire resistance from mechanical breakage through intralumenal acetylation.
Science. 2017 Apr 21;356(6335):328-332. doi: 10.1126/science.aai8764.
6
Tubulin isotype substitution revealed that isotype combination modulates microtubule dynamics in embryos.
J Cell Sci. 2017 May 1;130(9):1652-1661. doi: 10.1242/jcs.200923. Epub 2017 Mar 16.
7
Tubulin acetylation protects long-lived microtubules against mechanical ageing.
Nat Cell Biol. 2017 Apr;19(4):391-398. doi: 10.1038/ncb3481. Epub 2017 Feb 27.
8
Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures.
J Mol Biol. 2017 Mar 10;429(5):633-646. doi: 10.1016/j.jmb.2017.01.001. Epub 2017 Jan 17.
9
Automated tilt series alignment and tomographic reconstruction in IMOD.
J Struct Biol. 2017 Feb;197(2):102-113. doi: 10.1016/j.jsb.2016.07.011. Epub 2016 Jul 19.
10
The structured core of human β tubulin confers isotype-specific polymerization properties.
J Cell Biol. 2016 May 23;213(4):425-33. doi: 10.1083/jcb.201603050. Epub 2016 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验