Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 9, 48149 Münster, Germany.
Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstr. 2, 48149 Münster, Germany.
Soft Matter. 2023 Jun 7;19(22):4041-4061. doi: 10.1039/d3sm00104k.
We study the static and dynamic wetting of adaptive substrates using a mesoscopic hydrodynamic model for a liquid droplet on a solid substrate covered by a polymer brush. First, we show that on the macroscale Young's law still holds for the equilibrium contact angle and that on the mesoscale a Neumann-type law governs the shape of the wetting ridge. Following an analytic and numeric assessment of the static profiles of droplet and wetting ridge, we examine the dynamics of the wetting ridge for a liquid meniscus that is advanced at constant mean speed. In other words, we consider an inverse Landau-Levich case where a brush-covered plate is introduced into (and not drawn from) a liquid bath. We find a characteristic stick-slip motion that emerges when the dynamic contact angle of the stationary moving meniscus decreases with increasing velocity, and relate the onset of slip to Gibbs' inequality and to a cross-over in relevant time scales.
我们使用介观流体动力学模型研究了自适应基底的静态和动态润湿特性,该模型用于研究覆盖有聚合物刷的固体基底上液滴的润湿。首先,我们表明在宏观尺度上,杨氏定律仍然适用于平衡接触角,而在介观尺度上,Neumann 型定律控制着润湿脊的形状。在对液滴和润湿脊的静态轮廓进行了分析和数值评估之后,我们研究了在以恒定平均速度推进的液弯月面的润湿脊的动力学。换句话说,我们考虑了一个反向的 Landau-Levich 情况,其中一个覆盖有刷子的板被引入(而不是从)液体浴中。当静止移动弯月面的动态接触角随速度增加而减小时,我们发现了一种特征性的粘滑运动,并将滑动的开始与 Gibbs 不等式以及相关时间尺度的交叉联系起来。