Li Hong-Li, Cao Jinde, Hu Cheng, Jiang Haijun, Alsaadi Fawaz E
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14178-14189. doi: 10.1109/TNNLS.2023.3274959. Epub 2024 Oct 7.
This article studies synchronization issues for a class of discrete-time fractional-order quaternion-valued uncertain neural networks (DFQUNNs) using nonseparation method. First, based on the theory of discrete-time fractional calculus and quaternion properties, two equalities on the nabla Laplace transform and nabla sum are strictly proved, whereafter three Caputo difference inequalities are rigorously demonstrated. Next, based on our established inequalities and equalities, some simple and verifiable quasi-synchronization criteria are derived under the quaternion-valued nonlinear controller, and complete synchronization is achieved using quaternion-valued adaptive controller. Finally, numerical simulations are presented to substantiate the validity of derived results.
本文采用非分离方法研究了一类离散时间分数阶四元数值不确定神经网络(DFQUNNs)的同步问题。首先,基于离散时间分数阶微积分理论和四元数性质,严格证明了关于nabla拉普拉斯变换和nabla和的两个等式,随后严格证明了三个Caputo差分不等式。其次,基于我们建立的不等式和等式,在四元数值非线性控制器下推导了一些简单且可验证的准同步准则,并使用四元数值自适应控制器实现了完全同步。最后,给出了数值模拟以证实所得结果的有效性。