Huang Linqing, Zhao Wangbo, Liu Yong, Yang Duo, Liew Alan Wee-Chung, You Yang
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14218-14232. doi: 10.1109/TNNLS.2023.3275759. Epub 2024 Oct 7.
For cross-domain pattern classification, the supervised information (i.e., labeled patterns) in the source domain is often employed to help classify the unlabeled target domain patterns. In practice, multiple target domains are usually available. The unlabeled patterns (in different target domains) which have high-confidence predictions, can also provide some pseudo-supervised information for the downstream classification task. The performance in each target domain would be further improved if the pseudo-supervised information in different target domains can be effectively used. To this end, we propose an evidential multi-target domain adaptation (EMDA) method to take full advantage of the useful information in the single-source and multiple target domains. In EMDA, we first align distributions of the source and target domains by reducing maximum mean discrepancy (MMD) and covariance difference across domains. After that, we use the classifier learned by the labeled source domain data to classify query patterns in the target domains. The query patterns with high-confidence predictions are then selected to train a new classifier for yielding an extra piece of soft classification results of query patterns. The two pieces of soft classification results are then combined by evidence theory. In practice, their reliabilities/weights are usually diverse, and an equal treatment of them often yields the unreliable combination result. Thus, we propose to use the distribution discrepancy across domains to estimate their weighting factors, and discount them before fusing. The evidential combination of the two pieces of discounted soft classification results is employed to make the final class decision. The effectiveness of EMDA was verified by comparing with many advanced domain adaptation methods on several cross-domain pattern classification benchmark datasets.
对于跨域模式分类,源域中的监督信息(即带标签的模式)通常用于帮助对未标记的目标域模式进行分类。在实际应用中,通常存在多个目标域。具有高置信度预测的未标记模式(来自不同目标域)也可以为下游分类任务提供一些伪监督信息。如果能够有效利用不同目标域中的伪监督信息,每个目标域的性能将得到进一步提升。为此,我们提出了一种证据多目标域自适应(EMDA)方法,以充分利用单源和多目标域中的有用信息。在EMDA中,我们首先通过减小跨域的最大均值差异(MMD)和协方差差异来对齐源域和目标域的分布。之后,我们使用由带标签的源域数据学习得到的分类器对目标域中的查询模式进行分类。然后选择具有高置信度预测的查询模式来训练一个新的分类器,以产生查询模式的额外软分类结果。然后通过证据理论将这两个软分类结果进行组合。在实际中,它们的可靠性/权重通常是不同的,对它们进行同等对待往往会产生不可靠的组合结果。因此,我们建议使用跨域的分布差异来估计它们的加权因子,并在融合之前对其进行折扣。通过将两个经过折扣的软分类结果进行证据组合来做出最终的类别决策。通过在几个跨域模式分类基准数据集上与许多先进的域自适应方法进行比较,验证了EMDA的有效性。