Suppr超能文献

一种田间热处理方法,可降低甜菜残体中的存活率并改善对尾孢叶斑病的防治效果。

An in-field heat treatment to reduce survival in plant residue and improve Cercospora leaf spot management in sugarbeet.

作者信息

Hernandez Alexandra P, Bublitz Daniel M, Wenzel Thomas J, Ruth Sarah K, Bloomingdale Chris, Mettler David C, Bloomquist Mark W, Hanson Linda E, Willbur Jaime F

机构信息

Department of Plant, Soil and Microbial Sciences, Potato and Sugarbeet Pathology, Michigan State University, East Lansing, MI, United States.

Department of Plant, Soil and Microbial Sciences, Michigan State University Extension and Sugarbeet Advancement, Frankenmuth, MI, United States.

出版信息

Front Plant Sci. 2023 May 9;14:1100595. doi: 10.3389/fpls.2023.1100595. eCollection 2023.

Abstract

INTRODUCTION

Sugarbeets account for 55 to 60% of U.S. sugar production. Cercospora leaf spot (CLS), primarily caused by the fungal pathogen , is a major foliar disease of sugarbeet. Since leaf tissue is a primary site of pathogen survival between growing seasons, this study evaluated management strategies to reduce this source of inoculum.

METHODS

Fall- and spring-applied treatments were evaluated over three years at two study sites. Treatments included standard plowing or tilling immediately post-harvest, as well as the following alternatives to tillage: a propane-fueled heat treatment either in the fall immediately pre-harvest or in the spring prior to planting, and a desiccant (saflufenacil) application seven days pre-harvest. After fall treatments, leaf samples were evaluated to determine viability. The following season, inoculum pressure was measured by monitoring CLS severity in a susceptible beet variety planted into the same plots and by counting lesions on highly susceptible sentinel beets placed into the field at weekly intervals (fall treatments only).

RESULTS

No significant reductions in survival or CLS were observed following fall-applied desiccant. The fall heat treatment, however, significantly reduced lesion sporulation (2019-20 and 2020-21, < 0.0001; 2021-22, < 0.05) and isolation (2019-20, < 0.05) in at-harvest samples. Fall heat treatments also significantly reduced detectable sporulation for up to 70- (2021-22, < 0.01) or 90-days post-harvest (2020-21, < 0.05). Reduced numbers of CLS lesions were observed on sentinel beets in heat-treated plots from May 26-June 2 ( < 0.05) and June 2-9 ( < 0.01) in 2019, as well as June 15-22 ( < 0.01) in 2020. Both fall- and spring-applied heat treatments also reduced the area under the disease progress curve for CLS assessed the season after treatments were applied (Michigan 2020 and 2021, < 0.05; Minnesota 2019, < 0.05; 2021, < 0.0001).

DISCUSSION

Overall, heat treatments resulted in CLS reductions at levels comparable to standard tillage, with more consistent reductions across year and location. Based on these results, heat treatment of fresh or overwintered leaf tissue could be used as an integrated tillage-alternative practice to aid in CLS management.

摘要

引言

甜菜占美国食糖产量的55%至60%。尾孢叶斑病(CLS)主要由真菌病原体引起,是甜菜的一种主要叶部病害。由于叶片组织是病原菌在生长季节之间存活的主要场所,本研究评估了减少这种接种源的管理策略。

方法

在两个研究地点对秋季和春季施用的处理进行了为期三年的评估。处理措施包括收获后立即进行标准犁耕或翻耕,以及以下替代翻耕的方法:在收获前立即进行秋季丙烷加热处理或在种植前进行春季丙烷加热处理,以及在收获前七天施用干燥剂(甲磺草胺)。秋季处理后,对叶片样本进行评估以确定病原菌活力。在接下来的季节,通过监测种植在同一块土地上的易感甜菜品种的CLS严重程度,以及每周对放置在田间的高度易感哨兵甜菜上的病斑进行计数(仅秋季处理)来测量接种压力。

结果

秋季施用干燥剂后,病原菌存活或CLS没有显著减少。然而,秋季加热处理显著降低了收获时样本中的病斑产孢(2019 - 20年和2020 - 21年,P < 0.0001;2021 - 22年,P < 0.05)和病原菌分离率(2019 - 20年,P < 0.05)。秋季加热处理还显著减少了收获后长达70天(2021 - 22年,P < 0.01)或90天(2020 - 21年,P < 0.05)内可检测到的产孢。在2019年5月26日至6月2日(P < 0.05)和6月2日至9日(P < 0.01)以及2020年6月15日至22日(P < 0.01),在加热处理地块的哨兵甜菜上观察到CLS病斑数量减少。秋季和春季施用的加热处理还降低了处理后季节评估的CLS病害进展曲线下面积(密歇根州2020年和2021年,P < 0.05;明尼苏达州2019年,P < 0.05;2021年,P < 0.0001)。

讨论

总体而言,加热处理使CLS减少的程度与标准耕作相当,并且在不同年份和地点的减少更为一致。基于这些结果,对新鲜或越冬叶片组织进行加热处理可作为一种综合的替代耕作措施,以帮助管理CLS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ad/10204640/f80b73461eb1/fpls-14-1100595-g001.jpg

相似文献

1
An in-field heat treatment to reduce survival in plant residue and improve Cercospora leaf spot management in sugarbeet.
Front Plant Sci. 2023 May 9;14:1100595. doi: 10.3389/fpls.2023.1100595. eCollection 2023.
2
Weather Conditions Conducive for the Early-Season Production and Dispersal of Spores in the Great Lakes Region of North America.
Plant Dis. 2021 Oct;105(10):3063-3071. doi: 10.1094/PDIS-09-20-2004-RE. Epub 2021 Oct 26.
3
Seedborne Can Initiate Cercospora Leaf Spot from Sugar Beet () Fruit Tissue.
Phytopathology. 2022 May;112(5):1016-1028. doi: 10.1094/PHYTO-03-21-0113-R. Epub 2022 Apr 6.
4
Sensory assessment of sporulation for phenotyping the partial disease resistance of sugar beet genotypes.
Plant Methods. 2019 Nov 16;15:133. doi: 10.1186/s13007-019-0521-x. eCollection 2019.
5
Cercospora Leaf Spot Impacts on Postharvest Disease and Respiration of Affected Sugarbeet Roots.
Plant Dis. 2025 Feb;109(2):410-422. doi: 10.1094/PDIS-07-24-1478-RE. Epub 2025 Feb 21.
6
Nighttime Applications of Germicidal UV Light to Suppress Cercospora Leaf Spot in Table Beet.
Plant Dis. 2024 Aug;108(8):2518-2529. doi: 10.1094/PDIS-12-23-2715-RE. Epub 2024 Aug 5.
7
Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet.
Mol Plant Pathol. 2020 Aug;21(8):1020-1041. doi: 10.1111/mpp.12962.
8
First Report of QoI Insensitive Cercospora beticola on Sugar Beet in Ontario, Canada.
Plant Dis. 2013 Sep;97(9):1255. doi: 10.1094/PDIS-03-13-0285-PDN.
9
Histopathological Investigation of Varietal Responses to Infection Process on Sugar Beet Leaves.
Plant Dis. 2023 Dec;107(12):3906-3912. doi: 10.1094/PDIS-03-23-0562-RE. Epub 2023 Dec 14.
10
Weather-Based Predictive Modeling of Infection Events in Sugar Beet in Belgium.
J Fungi (Basel). 2021 Sep 18;7(9):777. doi: 10.3390/jof7090777.

引用本文的文献

本文引用的文献

1
Seedborne Can Initiate Cercospora Leaf Spot from Sugar Beet () Fruit Tissue.
Phytopathology. 2022 May;112(5):1016-1028. doi: 10.1094/PHYTO-03-21-0113-R. Epub 2022 Apr 6.
2
Weather Conditions Conducive for the Early-Season Production and Dispersal of Spores in the Great Lakes Region of North America.
Plant Dis. 2021 Oct;105(10):3063-3071. doi: 10.1094/PDIS-09-20-2004-RE. Epub 2021 Oct 26.
3
Cercospora beticola: The intoxicating lifestyle of the leaf spot pathogen of sugar beet.
Mol Plant Pathol. 2020 Aug;21(8):1020-1041. doi: 10.1111/mpp.12962.
4
Detection of and on Table Beet Seed using Quantitative PCR.
Phytopathology. 2020 Apr;110(4):943-951. doi: 10.1094/PHYTO-11-19-0412-R. Epub 2020 Mar 2.
6
A Cerospora Leaf Spot Model for Sugar Beet: In Practice by an Industry.
Plant Dis. 1998 Jul;82(7):716-726. doi: 10.1094/PDIS.1998.82.7.716.
7
Survival and Inoculum Production of Gibberella zeae in Wheat Residue.
Plant Dis. 2004 Jul;88(7):724-730. doi: 10.1094/PDIS.2004.88.7.724.
8
Genetic Diversity and Structure in Regional Populations from subsp. Suggest Two Clusters of Separate Origin.
Phytopathology. 2019 Jul;109(7):1280-1292. doi: 10.1094/PHYTO-07-18-0264-R. Epub 2019 May 29.
9
Improving the Cercospora Leaf Spot Management Model for Sugar Beet in Minnesota and North Dakota.
Plant Dis. 2007 Sep;91(9):1105-1108. doi: 10.1094/PDIS-91-9-1105.
10
Survival, Dispersal, and Primary Infection Site for Cercospora beticola in Sugar Beet.
Plant Dis. 2008 May;92(5):741-745. doi: 10.1094/PDIS-92-5-0741.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验