Suppr超能文献

提高数字珠型分析的准确性、稳健性和动态范围。

Improving the Accuracy, Robustness, and Dynamic Range of Digital Bead Assays.

机构信息

Quanterix Corporation, 900 Middlesex Turnpike, Billerica, Massachusetts 01821, United States.

出版信息

Anal Chem. 2023 Jun 6;95(22):8613-8620. doi: 10.1021/acs.analchem.3c00918. Epub 2023 May 25.

Abstract

We report methods that improve the quantification of digital bead assays (DBA)─such as the digital enzyme-linked immunosorbent assay (ELISA)─that have found widespread use for high sensitivity measurement of proteins in clinical research and diagnostics. In digital ELISA, proteins are captured on beads, labeled with enzymes, individual beads are interrogated for activity from one or more enzymes, and the average number of enzymes per bead (AEB) is determined based on Poisson statistics. The widespread use of digital ELISA has revealed limitations to the original approaches to quantification that can lead to inaccurate AEB. Here, we have addressed the inaccuracy in AEB due to deviations from Poisson distribution in a digital ELISA for Aβ-40 by changing the AEB calculation from a fixed threshold between digital counting and average normalized intensity to a smooth, continuous combination of digital counting and intensity. We addressed issues with determining the average product fluorescence intensity from single enzymes on beads by allowing outlier, high intensity arrays to be removed from average intensities, and by permitting the use of a wider range of arrays. These approaches improved the accuracy of a digital ELISA for tau protein that was affected by aggregated detection antibodies. We increased the dynamic range of a digital ELISA for IL-17A from AEB ∼25 to ∼130 by combining long and short exposure images at the product emission wavelength to create virtual images. The methods reported will significantly improve the accuracy and robustness of DBA based on imaging─such as single molecule arrays (Simoa)─and flow detection.

摘要

我们报告了一些方法,这些方法可提高数字珠粒分析(DBA)的定量能力,例如数字酶联免疫吸附测定(ELISA),该方法已广泛用于临床研究和诊断中对蛋白质的高灵敏度测量。在数字 ELISA 中,蛋白质被捕获在珠粒上,用酶标记,从一个或多个酶中检测单个珠粒的活性,并基于泊松统计确定每个珠粒的平均酶数(AEB)。数字 ELISA 的广泛应用揭示了原始定量方法的局限性,这些局限性可能导致 AEB 不准确。在这里,我们通过将 AEB 计算从数字计数和平均归一化强度之间的固定阈值更改为数字计数和强度的平滑连续组合,解决了数字 ELISA 中由于 Aβ-40 的泊松分布偏差导致的 AEB 不准确的问题。我们通过允许从平均强度中去除异常高强度的阵列,并允许使用更广泛的阵列,解决了从珠粒上的单个酶确定平均产物荧光强度的问题。这些方法提高了受聚集检测抗体影响的 tau 蛋白数字 ELISA 的准确性。我们通过在产物发射波长处组合长曝光和短曝光图像以创建虚拟图像,将数字 ELISA 用于 IL-17A 的动态范围从 AEB∼25 增加到∼130。报告的方法将显著提高基于成像(如单分子阵列(Simoa))和流动检测的 DBA 的准确性和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验