Suppr超能文献

提升在二维碳炔量子点/中空管状氮化碳异质结中进行污染物降解的电荷分离。

Boosting charge separation in graphdiyne quantum dots/hollow tubular carbon nitride heterojunction for water pollutant degradation.

机构信息

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.

College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.

出版信息

J Colloid Interface Sci. 2023 Sep 15;646:802-814. doi: 10.1016/j.jcis.2023.05.136. Epub 2023 May 21.

Abstract

Non-desirable solar energy absorption and poor charge transfer efficiency are two problems that limit the peroxymonosulfate (PMS) photocatalytic techniques. Herein, a metal-free boron-doped graphdiyne quantum dot (BGDs) modified hollow tubular g-CN photocatalyst (BGD/TCN) was synthesized to activate PMS and achieved effective space separation of carriers for degradation of bisphenol A. With 0.5 mM PMS, the degradation rate of bisphenol A (20 ppm) was 0.0634 min, 3.7-fold higher than that of TCN itself. The roles of BGDs in the distribution of electrons and photocatalytic property were well identified by experiments and density functional theory (DFT) calculations. The possible degradation intermediate products of bisphenol A were monitored by mass spectrometer and demonstrated to be nontoxic using ecological structure activity relationship modeling (ECOSAR). Finally, this newly-designed material was successfully applied in actual water bodies, which further renders its promising prospect for actual water remediation.

摘要

非理想的太阳能吸收和较差的电荷转移效率是限制过一硫酸盐(PMS)光催化技术的两个问题。在此,合成了一种无金属硼掺杂石墨炔量子点(BGDs)修饰的中空管状 g-CN 光催化剂(BGD/TCN),以激活 PMS 并实现载流子的有效空间分离,从而有效降解双酚 A。在 0.5 mM PMS 存在的条件下,20 ppm 浓度的双酚 A 的降解速率为 0.0634 min,是 TCN 自身的 3.7 倍。实验和密度泛函理论(DFT)计算很好地确定了 BGDs 在电子分布和光催化性能方面的作用。通过质谱监测到双酚 A 的可能降解中间产物,并通过生态结构活性关系建模(ECOSAR)证明其具有低毒性。最后,该新型材料成功应用于实际水体中,进一步展示了其在实际水修复方面的广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验