Suppr超能文献

担载于形貌相关 TiO 的 Pt 表面电荷分离及其对水分解的影响研究。

Investigation on the surface charge separation in Pt-supported morphology-related-TiO and its effect on water splitting.

机构信息

School of Optoelectronic Engineering, Chongqing University of Post and Telecommunication, No. 2, Chongwen Road, Chongqing 400065, China; Department of Chemistry, Southern University of Science and Technology, No. 1088, Xueyuan Blvd, Shenzhen, Guangdong 518055, China; School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Department of Chemistry, Southern University of Science and Technology, No. 1088, Xueyuan Blvd, Shenzhen, Guangdong 518055, China.

出版信息

J Colloid Interface Sci. 2023 Sep 15;646:815-823. doi: 10.1016/j.jcis.2023.05.104. Epub 2023 May 19.

Abstract

Lowering Pt loading in the catalyst while maintaining its superior catalytic efficiency during hydrogen evolution reaction (HER) is essential for the large-scale application of water splitting. The utilization of strong metal-support interaction (SMSI) through morphology engineering has emerged as an effective strategy in fabricating Pt-supported catalysts. However, a simple and explicit routine to realize the rational design of morphology-related SMSI remains challenging. Here we report a protocol for the photochemical deposition of Pt, which benefits from the intrinsic difference in absorption capability of TiO to establish proper Pt species and charge separation domains on the surface. With a comprehensive investigation of the surface environment through experiments and Density functional theory (DFT) calculations, charge transfer from Pt to Ti, the separation of electron-hole pairs, and the enhanced electron transfer in the TiO matrix were confirmed. It is reported that HO molecules can be spontaneously dissociated by the surface Ti and O, generating OH stabilized by adjacent Ti and Pt. Such adsorbed OH group induces changes in the electron density of Pt, consequently favours the H adsorption and enhances the HER. Benefiting from the preferable electronic state, the annealed Pt@TiO-pH9 (PTO-pH9@A) exhibits an overpotential of 30 mV to reach 10 mA cm-2 geo and a mass activity of 3954 A g-1Pt, which is 17-fold higher than the commercial Pt/C. Our work provides a new strategy for the high-efficient catalyst design by the surface state- regulated SMSI.

摘要

在保持析氢反应(HER)中优异催化效率的前提下,降低催化剂中的 Pt 负载量对于水分解的大规模应用至关重要。通过形态工程利用强金属-载体相互作用(SMSI)已成为制备 Pt 负载催化剂的有效策略。然而,实现合理设计与形态相关的 SMSI 的简单明确方案仍然具有挑战性。在这里,我们报告了一种光化学沉积 Pt 的方案,该方案得益于 TiO 固有吸收能力的差异,在表面上建立适当的 Pt 物种和电荷分离域。通过实验和密度泛函理论(DFT)计算对表面环境进行全面研究,证实了电子从 Pt 转移到 Ti、电子空穴对的分离以及 TiO 基体中电子转移的增强。据报道,HO 分子可以通过表面 Ti 和 O 自发解离,生成由相邻 Ti 和 Pt 稳定的 OH。这种吸附的 OH 基团改变了 Pt 的电子密度,从而有利于 H 的吸附并增强了 HER。得益于更优的电子态,退火后的 Pt@TiO-pH9(PTO-pH9@A)在达到 10 mA cm-2geo 时的过电势为 30 mV,质量活度为 3954 A g-1Pt,是商业 Pt/C 的 17 倍。我们的工作通过表面状态调控的 SMSI 为高效催化剂设计提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验