Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
Int J Biol Macromol. 2023 Jul 1;242(Pt 3):125014. doi: 10.1016/j.ijbiomac.2023.125014. Epub 2023 May 23.
Exopolysaccharides (EPS) produced by bacterial species are an important component of bacteria's survival strategy. Synthesis of EPS, principal component of extracellular polymeric substance, occurs through multiple pathways involving multitude of genes. While stress-induced concomitant increase in exoD transcript levels and EPS content have been shown earlier, experimental evidence for direct correlation is lacking. In the present study, role of ExoD in Nostoc sp. strain PCC 7120 was evaluated by generating a recombinant Nostoc strain AnexoD, wherein the ExoD (Alr2882) protein was constitutively overexpressed. AnexoD exhibited higher EPS production, propensity for formation of biofilms and tolerance to Cd stress compared to vector control AnpAM cells. Both Alr2882 and its paralog All1787 exhibited 5 transmembrane domains, with only All1787 predicted to interact with several proteins in polysaccharide synthesis. Phylogenetic analysis of orthologs of these proteins across cyanobacteria indicated that the two paralogs Alr2882 and All1787 and their corresponding orthologs arose divergently during evolution, and could have distinct roles to perform in the biosynthesis of EPS. This study has thrown open the possibility of engineering overproduction of EPS and inducing biofilm formation through genetic manipulation of EPS biosynthesis genes in cyanobacteria, thus building a cost-effective green platform for large scale production of EPS.
细菌产生的胞外多糖(EPS)是其生存策略的重要组成部分。EPS 是细胞外聚合物的主要成分,其合成途径涉及多种基因。虽然之前已经证明了应激诱导的 exoD 转录本水平和 EPS 含量的同时增加,但缺乏直接相关性的实验证据。在本研究中,通过构建重组 Nostoc 菌株 AnexoD(其中过表达 ExoD(Alr2882)蛋白),评估了 Nostoc sp. 菌株 PCC 7120 中的 ExoD 作用。与对照菌株 AnpAM 相比,AnexoD 表现出更高的 EPS 产量、形成生物膜的倾向和对 Cd 应激的耐受性。Alr2882 及其旁系同源物 All1787 均具有 5 个跨膜结构域,只有 All1787 被预测与多糖合成中的几种蛋白质相互作用。对这些蛋白质在蓝藻中的同源物的系统发育分析表明,这两个旁系同源物 Alr2882 和 All1787 及其相应的同源物在进化过程中是不同的,并且在 EPS 生物合成中可能具有不同的作用。这项研究为通过遗传操纵 EPS 生物合成基因在蓝藻中进行 EPS 的过量生产和诱导生物膜形成开辟了可能性,从而为 EPS 的大规模生产建立了一个具有成本效益的绿色平台。