Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761001, Israel.
J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):758-765. doi: 10.1107/S1600577523003636. Epub 2023 May 26.
Electro-chemo-mechanical (ECM) coupling refers to mechanical deformation due to electrochemically driven compositional change in a solid. An ECM actuator producing micrometre-size displacements and long-term stability at room temperature was recently reported, comprising a 20 mol% Gd-doped ceria (20GDC), a solid electrolyte membrane, placed between two working bodies made of TiO/20GDC (Ti-GDC) nanocomposites with Ti concentration of 38 mol%. The volumetric changes originating from oxidation or reduction in the local TiO units are hypothesized to be the origin of mechanical deformation in the ECM actuator. Studying the Ti concentration-dependent structural changes in the Ti-GDC nanocomposites is therefore required for (i) understanding the mechanism of dimensional changes in the ECM actuator and (ii) maximizing the ECM response. Here, the systematic investigation of the local structure of the Ti and Ce ions in Ti-GDC over a broad range of Ti concentrations using synchrotron X-ray absorption spectroscopy and X-ray diffraction is reported. The main finding is that, depending on the Ti concentration, Ti atoms either form a cerium titanate or segregate into a TiO anatase-like phase. The transition region between these two regimes with Ti(IV) concentration between 19% and 57% contained strongly disordered TiO units dispersed in 20GDC containing Ce(III) and Ce(IV) and hence rich with oxygen vacancies. As a result, this transition region is proposed to be the most advantageous for developing ECM-active materials.
电-化学-机械(ECM)耦合是指由于固体中电化学驱动的组成变化而导致的机械变形。最近报道了一种能够产生微米级位移且在室温下具有长期稳定性的 ECM 致动器,该致动器由 20mol%钆掺杂氧化铈(20GDC)、固体电解质膜组成,置于由 TiO/20GDC(Ti-GDC)纳米复合材料制成的两个工作体之间,Ti 浓度为 38mol%。假设来自局部 TiO 单元氧化或还原的体积变化是 ECM 致动器机械变形的起源。因此,研究 Ti-GDC 纳米复合材料中 Ti 浓度依赖性的结构变化对于 (i) 理解 ECM 致动器中尺寸变化的机制和 (ii) 最大化 ECM 响应是必需的。在这里,使用同步加速器 X 射线吸收光谱和 X 射线衍射对 Ti-GDC 中 Ti 和 Ce 离子的局部结构进行了广泛的 Ti 浓度研究。主要发现是,取决于 Ti 浓度,Ti 原子要么形成钛酸铈,要么分离成 TiO 锐钛矿相。这两种状态之间的过渡区,Ti(IV)浓度在 19%到 57%之间,含有强烈无序的 TiO 单元,分散在含有 Ce(III)和 Ce(IV)的 20GDC 中,因此富含氧空位。因此,该过渡区最有利于开发 ECM 活性材料。