Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Nano Lett. 2023 Jun 14;23(11):5042-5047. doi: 10.1021/acs.nanolett.3c00859. Epub 2023 May 26.
Silicon (Si)-based anodes are promising for next-generation lithium (Li)-ion batteries due to their high theoretical capacity (∼3600 mAh/g). However, they suffer quantities of capacity loss in the first cycle from initial solid electrolyte interphase (SEI) formation. Here, we present an prelithiation method to directly integrate a Li metal mesh into the cell assembly. A series of Li meshes are designed as prelithiation reagents, which are applied to the Si anode in battery fabrication and spontaneously prelithiate Si with electrolyte addition. Various porosities of Li meshes tune prelithiation amounts to control the degree of prelithiation precisely. Besides, the patterned mesh design enhances the uniformity of prelithiation. With an optimized prelithiation amount, the prelithiated Si-based full cell shows a constant >30% capacity improvement in 150 cycles. This work presents a facile prelithiation approach to improve battery performance.
硅(Si)基阳极由于其高理论容量(约 3600 mAh/g),有望成为下一代锂离子(Li)电池的首选。然而,在首次循环中,由于初始固体电解质界面(SEI)的形成,它们会经历大量的容量损失。在这里,我们提出了一种预锂化方法,即将锂金属网直接集成到电池组件中。一系列锂网被设计为预锂化试剂,在电池制造中应用于 Si 阳极,并在添加电解质时自发地对 Si 进行预锂化。不同孔隙率的锂网可调节预锂化量,从而精确控制预锂化程度。此外,图案化的网设计增强了预锂化的均匀性。通过优化预锂化量,预锂化 Si 基全电池在 150 次循环中表现出持续的 >30%的容量提升。这项工作提出了一种简便的预锂化方法来提高电池性能。