Suppr超能文献

scSemiAAE:一种用于单细胞 RNA-seq 数据的半监督聚类模型。

scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.

机构信息

School of Mathematics and System Science, Xinjiang University, Urumqi, China.

School of Computer Science and Technology, Anhui University, Hefei, China.

出版信息

BMC Bioinformatics. 2023 May 26;24(1):217. doi: 10.1186/s12859-023-05339-4.

Abstract

BACKGROUND

Single-cell RNA sequencing (scRNA-seq) strives to capture cellular diversity with higher resolution than bulk RNA sequencing. Clustering analysis is critical to transcriptome research as it allows for further identification and discovery of new cell types. Unsupervised clustering cannot integrate prior knowledge where relevant information is widely available. Purely unsupervised clustering algorithms may not yield biologically interpretable clusters when confronted with the high dimensionality of scRNA-seq data and frequent dropout events, which makes identification of cell types more challenging.

RESULTS

We propose scSemiAAE, a semi-supervised clustering model for scRNA sequence analysis using deep generative neural networks. Specifically, scSemiAAE carefully designs a ZINB adversarial autoencoder-based architecture that inherently integrates adversarial training and semi-supervised modules in the latent space. In a series of experiments on scRNA-seq datasets spanning thousands to tens of thousands of cells, scSemiAAE can significantly improve clustering performance compared to dozens of unsupervised and semi-supervised algorithms, promoting clustering and interpretability of downstream analyses.

CONCLUSION

scSemiAAE is a Python-based algorithm implemented on the VSCode platform that provides efficient visualization, clustering, and cell type assignment for scRNA-seq data. The tool is available from https://github.com/WHang98/scSemiAAE .

摘要

背景

单细胞 RNA 测序 (scRNA-seq) 力图以比批量 RNA 测序更高的分辨率捕获细胞多样性。聚类分析对于转录组研究至关重要,因为它允许进一步识别和发现新的细胞类型。无监督聚类无法集成相关信息广泛可用的先验知识。当面对 scRNA-seq 数据的高维性和频繁的缺失事件时,纯粹的无监督聚类算法可能无法产生生物学可解释的聚类,这使得细胞类型的识别更加具有挑战性。

结果

我们提出了 scSemiAAE,这是一种使用深度生成神经网络进行 scRNA 序列分析的半监督聚类模型。具体来说,scSemiAAE 精心设计了基于 ZINB 对抗自动编码器的架构,该架构在潜在空间中内在地集成了对抗训练和半监督模块。在对数千到数万细胞的 scRNA-seq 数据集进行的一系列实验中,与数十种无监督和半监督算法相比,scSemiAAE 可以显著提高聚类性能,促进下游分析的聚类和可解释性。

结论

scSemiAAE 是一个基于 Python 的算法,在 VSCode 平台上实现,为 scRNA-seq 数据提供高效的可视化、聚类和细胞类型分配。该工具可从 https://github.com/WHang98/scSemiAAE 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5f/10214737/572e8a6aca4e/12859_2023_5339_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验