Suppr超能文献

使用层次自动编码器实现快速、精确的单细胞数据分析。

Fast and precise single-cell data analysis using a hierarchical autoencoder.

机构信息

Department of Computer Science and Engineering, University of Nevada Reno, Reno, NV, USA.

Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.

出版信息

Nat Commun. 2021 Feb 15;12(1):1029. doi: 10.1038/s41467-021-21312-2.

Abstract

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that reliably extracts representative information of each cell. The scDHA pipeline consists of two core modules. The first module is a non-negative kernel autoencoder able to remove genes or components that have insignificant contributions to the part-based representation of the data. The second module is a stacked Bayesian autoencoder that projects the data onto a low-dimensional space (compressed). To diminish the tendency to overfit of neural networks, we repeatedly perturb the compressed space to learn a more generalized representation of the data. In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art techniques in many research sub-fields of scRNA-seq analysis, including cell segregation through unsupervised learning, visualization of transcriptome landscape, cell classification, and pseudo-time inference.

摘要

单细胞 RNA 测序(scRNA-seq)研究中的一个主要挑战来自于海量数据和过高的噪声水平。为了解决这一挑战,我们引入了一种分析框架,名为基于层次自动编码器的单细胞分解(scDHA),它可以可靠地提取每个细胞的代表性信息。scDHA 流程由两个核心模块组成。第一个模块是一个非负核自动编码器,能够去除对数据基于部分表示的贡献不显著的基因或成分。第二个模块是一个堆叠贝叶斯自动编码器,它将数据映射到一个低维空间(压缩)。为了减少神经网络过拟合的趋势,我们反复扰动压缩空间以学习数据更具泛化性的表示。在广泛的分析中,我们证明 scDHA 在 scRNA-seq 分析的许多研究子领域中都优于最先进的技术,包括通过无监督学习进行细胞分离、转录组景观可视化、细胞分类和伪时间推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/a40d10ee6e9f/41467_2021_21312_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验