Department of Computer Science and Engineering, University of Nevada Reno, Reno, NV, USA.
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
Nat Commun. 2021 Feb 15;12(1):1029. doi: 10.1038/s41467-021-21312-2.
A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that reliably extracts representative information of each cell. The scDHA pipeline consists of two core modules. The first module is a non-negative kernel autoencoder able to remove genes or components that have insignificant contributions to the part-based representation of the data. The second module is a stacked Bayesian autoencoder that projects the data onto a low-dimensional space (compressed). To diminish the tendency to overfit of neural networks, we repeatedly perturb the compressed space to learn a more generalized representation of the data. In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art techniques in many research sub-fields of scRNA-seq analysis, including cell segregation through unsupervised learning, visualization of transcriptome landscape, cell classification, and pseudo-time inference.
单细胞 RNA 测序(scRNA-seq)研究中的一个主要挑战来自于海量数据和过高的噪声水平。为了解决这一挑战,我们引入了一种分析框架,名为基于层次自动编码器的单细胞分解(scDHA),它可以可靠地提取每个细胞的代表性信息。scDHA 流程由两个核心模块组成。第一个模块是一个非负核自动编码器,能够去除对数据基于部分表示的贡献不显著的基因或成分。第二个模块是一个堆叠贝叶斯自动编码器,它将数据映射到一个低维空间(压缩)。为了减少神经网络过拟合的趋势,我们反复扰动压缩空间以学习数据更具泛化性的表示。在广泛的分析中,我们证明 scDHA 在 scRNA-seq 分析的许多研究子领域中都优于最先进的技术,包括通过无监督学习进行细胞分离、转录组景观可视化、细胞分类和伪时间推断。
Nat Commun. 2021-2-15
IEEE/ACM Trans Comput Biol Bioinform. 2022
BMC Bioinformatics. 2019-7-8
BMC Bioinformatics. 2019-12-24
Comput Struct Biotechnol J. 2025-4-2
Adv Sci (Weinh). 2025-4-17
Brief Bioinform. 2025-3-4
Brief Bioinform. 2021-5-20
Trends Biotechnol. 2020-12
Nat Rev Genet. 2019-9
Nat Biotechnol. 2019-4-1
Nat Rev Genet. 2019-5