文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用层次自动编码器实现快速、精确的单细胞数据分析。

Fast and precise single-cell data analysis using a hierarchical autoencoder.

机构信息

Department of Computer Science and Engineering, University of Nevada Reno, Reno, NV, USA.

Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.

出版信息

Nat Commun. 2021 Feb 15;12(1):1029. doi: 10.1038/s41467-021-21312-2.


DOI:10.1038/s41467-021-21312-2
PMID:33589635
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7884436/
Abstract

A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and the excess noise level. To address this challenge, we introduce an analysis framework, named single-cell Decomposition using Hierarchical Autoencoder (scDHA), that reliably extracts representative information of each cell. The scDHA pipeline consists of two core modules. The first module is a non-negative kernel autoencoder able to remove genes or components that have insignificant contributions to the part-based representation of the data. The second module is a stacked Bayesian autoencoder that projects the data onto a low-dimensional space (compressed). To diminish the tendency to overfit of neural networks, we repeatedly perturb the compressed space to learn a more generalized representation of the data. In an extensive analysis, we demonstrate that scDHA outperforms state-of-the-art techniques in many research sub-fields of scRNA-seq analysis, including cell segregation through unsupervised learning, visualization of transcriptome landscape, cell classification, and pseudo-time inference.

摘要

单细胞 RNA 测序(scRNA-seq)研究中的一个主要挑战来自于海量数据和过高的噪声水平。为了解决这一挑战,我们引入了一种分析框架,名为基于层次自动编码器的单细胞分解(scDHA),它可以可靠地提取每个细胞的代表性信息。scDHA 流程由两个核心模块组成。第一个模块是一个非负核自动编码器,能够去除对数据基于部分表示的贡献不显著的基因或成分。第二个模块是一个堆叠贝叶斯自动编码器,它将数据映射到一个低维空间(压缩)。为了减少神经网络过拟合的趋势,我们反复扰动压缩空间以学习数据更具泛化性的表示。在广泛的分析中,我们证明 scDHA 在 scRNA-seq 分析的许多研究子领域中都优于最先进的技术,包括通过无监督学习进行细胞分离、转录组景观可视化、细胞分类和伪时间推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/5b07f4bc9963/41467_2021_21312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/a40d10ee6e9f/41467_2021_21312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/023f38240075/41467_2021_21312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/5dbf12dc7390/41467_2021_21312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/3e4a635e0f39/41467_2021_21312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/5b07f4bc9963/41467_2021_21312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/a40d10ee6e9f/41467_2021_21312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/023f38240075/41467_2021_21312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/5dbf12dc7390/41467_2021_21312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/3e4a635e0f39/41467_2021_21312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e51/7884436/5b07f4bc9963/41467_2021_21312_Fig5_HTML.jpg

相似文献

[1]
Fast and precise single-cell data analysis using a hierarchical autoencoder.

Nat Commun. 2021-2-15

[2]
Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.

Brief Bioinform. 2022-3-10

[3]
scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[4]
Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics.

Pac Symp Biocomput. 2019

[5]
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder.

Front Genet. 2021-8-27

[6]
Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.

BMC Bioinformatics. 2019-7-8

[7]
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.

BMC Bioinformatics. 2019-12-24

[8]
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.

Bioinformatics. 2023-2-14

[9]
Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.

Brief Bioinform. 2023-5-19

[10]
A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.

BMC Bioinformatics. 2020-2-21

引用本文的文献

[1]
RGCN-BA: relational graph convolutional network with batch awareness for single-cell RNA sequencing clustering.

Brief Bioinform. 2025-7-2

[2]
Exploring machine learning strategies for single-cell transcriptomic analysis in wound healing.

Burns Trauma. 2025-5-13

[3]
ARTEMIS integrates autoencoders and Schrödinger Bridges to predict continuous dynamics of gene expression, cell population, and perturbation from time-series single-cell data.

Bioinformatics. 2025-7-1

[4]
Ensemble machine learning-based pre-trained annotation approach for scRNA-seq data using gradient boosting with genetic optimizer.

BMC Bioinformatics. 2025-7-1

[5]
iGTP: learning interpretable cellular embedding for inferring biological mechanisms underlying single-cell transcriptomics.

Brief Bioinform. 2025-5-1

[6]
Mapping Cell Identity from scRNA-seq: A primer on computational methods.

Comput Struct Biotechnol J. 2025-4-2

[7]
scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types.

IET Syst Biol. 2025

[8]
CeiTEA: Adaptive Hierarchy of Single Cells with Topological Entropy.

Adv Sci (Weinh). 2025-4-17

[9]
scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis.

Genome Biol. 2025-3-21

[10]
MOSim: bulk and single-cell multilayer regulatory network simulator.

Brief Bioinform. 2025-3-4

本文引用的文献

[1]
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data.

Brief Bioinform. 2021-5-20

[2]
Single cell transcriptomics reveals opioid usage evokes widespread suppression of antiviral gene program.

Nat Commun. 2020-5-26

[3]
Microfluidics in Single-Cell Virology: Technologies and Applications.

Trends Biotechnol. 2020-12

[4]
Integration of eQTL and a Single-Cell Atlas in the Human Eye Identifies Causal Genes for Age-Related Macular Degeneration.

Cell Rep. 2020-1-28

[5]
SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection.

Genome Res. 2020-2

[6]
Prevention of tuberculosis in macaques after intravenous BCG immunization.

Nature. 2020-1-1

[7]
Challenges in measuring and understanding biological noise.

Nat Rev Genet. 2019-9

[8]
Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species.

Immunity. 2019-4-9

[9]
A comparison of single-cell trajectory inference methods.

Nat Biotechnol. 2019-4-1

[10]
Challenges in unsupervised clustering of single-cell RNA-seq data.

Nat Rev Genet. 2019-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索