Suppr超能文献

为组织工程应用量身定制3D打印类骨支架的微观结构

Tailoring the Microarchitectures of 3D Printed Bone-like Scaffolds for Tissue Engineering Applications.

作者信息

Zenobi Eleonora, Merco Miriam, Mochi Federico, Ruspi Jacopo, Pecci Raffaella, Marchese Rodolfo, Convertino Annalisa, Lisi Antonella, Del Gaudio Costantino, Ledda Mario

机构信息

Hypatia Research Consortium, Via del Politecnico snc, 00133 Rome, Italy.

E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy.

出版信息

Bioengineering (Basel). 2023 May 9;10(5):567. doi: 10.3390/bioengineering10050567.

Abstract

Material extrusion (MEX), commonly referred to as fused deposition modeling (FDM) or fused filament fabrication (FFF), is a versatile and cost-effective technique to fabricate suitable scaffolds for tissue engineering. Driven by a computer-aided design input, specific patterns can be easily collected in an extremely reproducible and repeatable process. Referring to possible skeletal affections, 3D-printed scaffolds can support tissue regeneration of large bone defects with complex geometries, an open major clinical challenge. In this study, polylactic acid scaffolds were printed resembling trabecular bone microarchitecture in order to deal with morphologically biomimetic features to potentially enhance the biological outcome. Three models with different pore sizes (i.e., 500, 600, and 700 µm) were prepared and evaluated by means of micro-computed tomography. The biological assessment was carried out seeding SAOS-2 cells, a bone-like cell model, on the scaffolds, which showed excellent biocompatibility, bioactivity, and osteoinductivity. The model with larger pores, characterized by improved osteoconductive properties and protein adsorption rate, was further investigated as a potential platform for bone-tissue engineering, evaluating the paracrine activity of human mesenchymal stem cells. The reported findings demonstrate that the designed microarchitecture, better mimicking the natural bone extracellular matrix, favors a greater bioactivity and can be thus regarded as an interesting option for bone-tissue engineering.

摘要

材料挤出(MEX),通常称为熔融沉积建模(FDM)或熔融长丝制造(FFF),是一种用于制造适合组织工程支架的通用且经济高效的技术。在计算机辅助设计输入的驱动下,特定图案可以在极其可重复和可再现的过程中轻松生成。针对可能的骨骼疾病,3D打印支架可以支持具有复杂几何形状的大骨缺损的组织再生,这是一个重大的临床挑战。在本研究中,打印了类似小梁骨微结构的聚乳酸支架,以处理形态学上的仿生特征,从而潜在地提高生物学效果。制备了三种具有不同孔径(即500、600和700 µm)的模型,并通过微计算机断层扫描进行评估。通过将类骨细胞模型SAOS-2细胞接种在支架上进行生物学评估,结果显示该支架具有优异的生物相容性、生物活性和骨诱导性。具有较大孔隙的模型具有改善的骨传导性能和蛋白质吸附率,作为骨组织工程的潜在平台进一步研究,评估人间充质干细胞的旁分泌活性。报告的研究结果表明,设计的微结构更好地模拟了天然骨细胞外基质,有利于提高生物活性,因此可被视为骨组织工程的一个有趣选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a38e/10215619/d379e718ad6d/bioengineering-10-00567-g001.jpg

相似文献

1
Tailoring the Microarchitectures of 3D Printed Bone-like Scaffolds for Tissue Engineering Applications.
Bioengineering (Basel). 2023 May 9;10(5):567. doi: 10.3390/bioengineering10050567.
2
Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering.
Int J Mol Sci. 2022 May 11;23(10):5383. doi: 10.3390/ijms23105383.
3
3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization.
J Mech Behav Biomed Mater. 2020 Mar;103:103583. doi: 10.1016/j.jmbbm.2019.103583. Epub 2019 Dec 5.
7
Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer.
Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:111945. doi: 10.1016/j.msec.2021.111945. Epub 2021 Mar 4.
8
3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications.
Int J Pharm. 2023 Jun 25;641:123093. doi: 10.1016/j.ijpharm.2023.123093. Epub 2023 May 31.
9
Applications of 3D printed bone tissue engineering scaffolds in the stem cell field.
Regen Ther. 2021 Feb 5;16:63-72. doi: 10.1016/j.reth.2021.01.007. eCollection 2021 Mar.

本文引用的文献

1
Three-dimensional cortical and trabecular bone microstructure of the proximal ulna.
Arch Orthop Trauma Surg. 2023 Jan;143(1):213-223. doi: 10.1007/s00402-021-04023-7. Epub 2021 Jul 5.
2
Cortical and trabecular morphometric properties of the human calvarium.
Bone. 2021 Jul;148:115931. doi: 10.1016/j.bone.2021.115931. Epub 2021 Mar 23.
3
Trabecular structure and composition analysis of human autogenous bone donor sites using micro-computed tomography.
J Oral Biosci. 2021 Mar;63(1):74-79. doi: 10.1016/j.job.2021.01.003. Epub 2021 Jan 21.
4
Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair.
ACS Biomater Sci Eng. 2018 Apr 9;4(4):1162-1175. doi: 10.1021/acsbiomaterials.7b00005. Epub 2017 Jun 9.
5
Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111528. doi: 10.1016/j.msec.2020.111528. Epub 2020 Sep 18.
7
3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization.
J Mech Behav Biomed Mater. 2020 Mar;103:103583. doi: 10.1016/j.jmbbm.2019.103583. Epub 2019 Dec 5.
8
Mesenchymal Stem Cell Migration and Tissue Repair.
Cells. 2019 Jul 28;8(8):784. doi: 10.3390/cells8080784.
9
Stem cells: past, present, and future.
Stem Cell Res Ther. 2019 Feb 26;10(1):68. doi: 10.1186/s13287-019-1165-5.
10
3D Inkjet Printing of Complex, Cell-Laden Hydrogel Structures.
Sci Rep. 2018 Nov 20;8(1):17099. doi: 10.1038/s41598-018-35504-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验