Suppr超能文献

通过医学模糊专家系统提高医疗保健数据交互式可视化工具的可信度。

Improving the Trustworthiness of Interactive Visualization Tools for Healthcare Data through a Medical Fuzzy Expert System.

作者信息

Albarrak Abdullah M

机构信息

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 May 13;13(10):1733. doi: 10.3390/diagnostics13101733.

Abstract

Successful healthcare companies and illness diagnostics require data visualization. Healthcare and medical data analysis are needed to use compound information. Professionals often gather, evaluate, and monitor medical data to gauge risk, performance capability, tiredness, and adaptation to a medical diagnosis. Medical diagnosis data come from EMRs, software systems, hospital administration systems, laboratories, IoT devices, and billing and coding software. Interactive diagnosis data visualization tools enable healthcare professionals to identify trends and interpret data analytics results. Selecting the most trustworthy interactive visualization tool or application is crucial for the reliability of medical diagnosis data. Thus, this study examined the trustworthiness of interactive visualization tools for healthcare data analytics and medical diagnosis. The present study uses a scientific approach for evaluating the trustworthiness of interactive visualization tools for healthcare and medical diagnosis data and provides a novel idea and path for future healthcare experts. Our goal in this research was to make an idealness assessment of the trustworthiness impact of interactive visualization models under fuzzy conditions by using a medical fuzzy expert system based on an analytical network process and technique for ordering preference by similarity to ideal solutions. To eliminate the ambiguities that arose due to the multiple opinions of these experts and to externalize and organize information about the selection context of the interactive visualization models, the study used the proposed hybrid decision model. According to the results achieved through trustworthiness assessments of different visualization tools, BoldBI was found to be the most prioritized and trustworthy visualization tool among other alternatives. The suggested study would aid healthcare and medical professionals in interactive data visualization in identifying, selecting, prioritizing, and evaluating useful and trustworthy visualization-related characteristics, thereby leading to more accurate medical diagnosis profiles.

摘要

成功的医疗保健公司和疾病诊断需要数据可视化。使用复合信息需要进行医疗保健和医学数据分析。专业人员经常收集、评估和监测医疗数据,以评估风险、性能能力、疲劳程度以及对医学诊断的适应性。医学诊断数据来自电子病历、软件系统、医院管理系统、实验室、物联网设备以及计费和编码软件。交互式诊断数据可视化工具使医疗保健专业人员能够识别趋势并解读数据分析结果。选择最值得信赖的交互式可视化工具或应用程序对于医学诊断数据的可靠性至关重要。因此,本研究考察了用于医疗保健数据分析和医学诊断的交互式可视化工具的可信度。本研究采用科学方法评估用于医疗保健和医学诊断数据的交互式可视化工具的可信度,并为未来的医疗保健专家提供了新的思路和途径。我们在这项研究中的目标是,通过使用基于分析网络过程和理想解相似排序法的医学模糊专家系统,对模糊条件下交互式可视化模型的可信度影响进行理想度评估。为了消除由于这些专家的多种意见而产生的模糊性,并将有关交互式可视化模型选择背景的信息外部化和组织起来,该研究使用了所提出的混合决策模型。根据对不同可视化工具的可信度评估所取得的结果,发现BoldBI是其他备选工具中最具优先级且最值得信赖的可视化工具。本建议研究将帮助医疗保健和医学专业人员在交互式数据可视化中识别、选择、确定优先级并评估有用且值得信赖的可视化相关特征,从而得出更准确的医学诊断概况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验