文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于简单排序过程的选材决策分析模型。

A decision analysis model for material selection using simple ranking process.

机构信息

Geneva School of Economics and Management, University of Geneva, 1211, Geneva, Switzerland.

Faculty of Civil Engineering, Institute of Sustainable Construction, Laboratory of Operational Research, Vilnius Gediminas Technical University, Vilnius, Lithuania.

出版信息

Sci Rep. 2023 May 27;13(1):8631. doi: 10.1038/s41598-023-35405-z.


DOI:10.1038/s41598-023-35405-z
PMID:37244904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10224978/
Abstract

A large number of materials and various criteria fashion material selection problems as complex multi-criteria decision-making (MCDM) problems. This paper proposes a new decision-making method called the simple ranking process (SRP) to solve complex material selection problems. The accuracy of the criteria weights has a direct impact on the outcomes of the new method. In contrast to current MCDM methods, the normalization step has been eliminated from the SRP method as a potential source of producing incorrect results. The application of the method is appropriate for situations with high levels of complexity in material selection because it only considers the ranks of alternatives in each criterion. The first scenario of vital-immaterial mediocre method (VIMM) is used as a tool to derive criteria weights based on expert assessment. The result of SRP is compared with a number of MCDM methods. In order to evaluate the findings of analytical comparison, a novel statistical measure known as compromise decision index (CDI) is proposed in this paper. CDI revealed that the MCDM methods' outputs for solving the material selection could not be theoretically proven and requires to be evaluated through practice. As a result, the dependency analysis-an additional innovative statistical measure is introduced to demonstrate the reliability of MCDM methods by assessing its dependency on criteria weights. The findings demonstrated that SRP is extremely reliant on criteria weights and its reliability rises with the number of criteria, making it a perfect tool for solving challenging MCDM problems.

摘要

大量的材料和各种标准将材料选择问题塑造成复杂的多准则决策(MCDM)问题。本文提出了一种新的决策方法,称为简单排序过程(SRP),用于解决复杂的材料选择问题。标准权重的准确性对新方法的结果有直接影响。与当前的 MCDM 方法不同,SRP 方法消除了归一化步骤,因为这可能是产生错误结果的一个潜在来源。该方法适用于材料选择中具有高度复杂性的情况,因为它只考虑每个标准中替代方案的等级。基于专家评估,利用重要-不重要中间方法(VIMM)的第一个场景作为工具来推导出标准权重。将 SRP 的结果与多种 MCDM 方法进行比较。为了评估分析比较的结果,本文提出了一种新的统计度量,称为折衷决策指数(CDI)。CDI 表明,MCDM 方法在解决材料选择问题时的输出无法从理论上证明,需要通过实践进行评估。因此,引入了依赖分析——一种额外的创新统计度量,通过评估其对标准权重的依赖关系来证明 MCDM 方法的可靠性。研究结果表明,SRP 对标准权重极其依赖,其可靠性随着标准数量的增加而提高,使其成为解决具有挑战性的 MCDM 问题的理想工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/5e393f114c9f/41598_2023_35405_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/3893c28be2cc/41598_2023_35405_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/8f571b7298df/41598_2023_35405_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c112cd3306a4/41598_2023_35405_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/169fb811cbc6/41598_2023_35405_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c97f3a1dc341/41598_2023_35405_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e335e857b1c1/41598_2023_35405_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/905ff6621117/41598_2023_35405_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e3f969ae98cd/41598_2023_35405_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/dff63f451c0a/41598_2023_35405_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/695aa8c7b988/41598_2023_35405_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c5fd46a89fc8/41598_2023_35405_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/3044f29c9a94/41598_2023_35405_Fig12a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/5eab101f46c7/41598_2023_35405_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/bd4f4a22aae3/41598_2023_35405_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/532b97a05bda/41598_2023_35405_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/d172d084028b/41598_2023_35405_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/b06195e6bd44/41598_2023_35405_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e4518c148a00/41598_2023_35405_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/fa76ed39c058/41598_2023_35405_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/1163d1cc3869/41598_2023_35405_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/5e393f114c9f/41598_2023_35405_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/3893c28be2cc/41598_2023_35405_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/8f571b7298df/41598_2023_35405_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c112cd3306a4/41598_2023_35405_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/169fb811cbc6/41598_2023_35405_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c97f3a1dc341/41598_2023_35405_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e335e857b1c1/41598_2023_35405_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/905ff6621117/41598_2023_35405_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e3f969ae98cd/41598_2023_35405_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/dff63f451c0a/41598_2023_35405_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/695aa8c7b988/41598_2023_35405_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/c5fd46a89fc8/41598_2023_35405_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/3044f29c9a94/41598_2023_35405_Fig12a_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/5eab101f46c7/41598_2023_35405_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/bd4f4a22aae3/41598_2023_35405_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/532b97a05bda/41598_2023_35405_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/d172d084028b/41598_2023_35405_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/b06195e6bd44/41598_2023_35405_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/e4518c148a00/41598_2023_35405_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/fa76ed39c058/41598_2023_35405_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/1163d1cc3869/41598_2023_35405_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536f/10224978/5e393f114c9f/41598_2023_35405_Fig21_HTML.jpg

相似文献

[1]
A decision analysis model for material selection using simple ranking process.

Sci Rep. 2023-5-27

[2]
Assessment of consolidative multi-criteria decision making (C-MCDM) algorithms for optimal mapping of polymer materials in additive manufacturing: A case study of orthotic application.

Heliyon. 2024-5-8

[3]
A Multicriteria Decision-Making Framework for Access Point Selection in Hybrid LiFi/WiFi Networks Using Integrated AHP-VIKOR Technique.

Sensors (Basel). 2023-1-23

[4]
Green material selection for sustainability: A hybrid MCDM approach.

PLoS One. 2017-5-12

[5]
Polymeric Materials Selection for Flexible Pulsating Heat Pipe Manufacturing Using a Comparative Hybrid MCDM Approach.

Polymers (Basel). 2023-7-3

[6]
On the Monte Carlo weights in multiple criteria decision analysis.

PLoS One. 2022

[7]
A novel hybrid MCDM approach to evaluate universities based on student perspective.

Scientometrics. 2023

[8]
Proposal for an objective binary benchmarking framework that validates each other for comparing MCDM methods through data analytics.

PeerJ Comput Sci. 2023-4-25

[9]
Historical heritage-MultiCriteria Decision Method (H-MCDM) to prioritize intervention strategies for the adaptive reuse of valuable architectural assets.

MethodsX. 2023-12-1

[10]
Development of a multi-criteria decision-making-based assessment model for dental material selection: Engine-driven nickel-titanium instruments case study.

Clin Oral Investig. 2022-3

引用本文的文献

[1]
Six Sigma model with implement SAPF to enhance power quality and product quality at induction heat treatment process.

Sci Rep. 2025-7-2

[2]
A dynamic framework for contractors to measure the performance of highway maintenance based on grey theory.

Sci Rep. 2024-9-19

[3]
Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO Photocatalytic Nanoparticles for Biomedical and Environmental Applications.

Molecules. 2024-8-6

[4]
Patient engagement in multimorbidity: a systematic review of patient-reported outcome measures.

Front Psychol. 2024-7-17

[5]
Assessment of consolidative multi-criteria decision making (C-MCDM) algorithms for optimal mapping of polymer materials in additive manufacturing: A case study of orthotic application.

Heliyon. 2024-5-8

本文引用的文献

[1]
Dental Material Selection for the Additive Manufacturing of Removable Complete Dentures (RCD).

Int J Mol Sci. 2023-3-29

[2]
Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model.

Polymers (Basel). 2023-3-17

[3]
Multi-Criteria Decision Making Methods for Selection of Lightweight Material for Railway Vehicles.

Materials (Basel). 2022-12-30

[4]
Application of Integrated BWM Fuzzy-MARCOS Approach for Coating Material Selection in Tooling Industries.

Materials (Basel). 2022-12-16

[5]
Fermatean fuzzy ELECTRE multi-criteria group decision-making and most suitable biomedical material selection.

Artif Intell Med. 2022-5

[6]
Material selection in design for deconstruction using Kano model, fuzzy-AHP and TOPSIS methodology.

Waste Manag Res. 2022-4

[7]
Green material selection for sustainability: A hybrid MCDM approach.

PLoS One. 2017-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索