Suppr超能文献

以二元金属硫化物混合纳米笼为阳极的长循环寿命钠离子电池。

Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode.

作者信息

Huang Xiaofei, Tao Kehao, Han Tianli, Li Jinjin, Zhang Huigang, Hu Chaoquan, Niu Junjie, Liu Jinyun

机构信息

Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China.

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

出版信息

Small. 2023 Sep;19(39):e2302706. doi: 10.1002/smll.202302706. Epub 2023 May 28.

Abstract

Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu S nanocages (CoS/Cu S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na /e transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu S@C-NC as anode displays a high capacity of 435.3 mAh g after 1000 cycles at 2.0 A g (≈3.4 C). Under a higher rate of 10.0 A g (≈17 C), a capacity of as high as 347.2 mAh g is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na /e transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.

摘要

由于具有相对较高的容量和较低的成本,过渡金属硫化物(TMS)作为钠离子电池(SIBs)的负极显示出广阔的应用前景。在此,构建了一种由碳包覆的CoS/Cu₂S纳米笼(CoS/Cu₂S@C-NC)组成的二元金属硫化物杂化物。充满导电碳的互锁异质结构加速了Na⁺/e⁻转移,从而改善了电化学动力学。此外,保护性碳层在充电/放电时可提供更好的体积适应性。结果,以CoS/Cu₂S@C-NC为负极的电池在2.0 A g⁻¹(≈3.4 C)下循环1000次后显示出435.3 mAh g⁻¹的高容量。在10.0 A g⁻¹(≈17 C)的更高倍率下,经过2300次长循环后仍保持高达347.2 mAh g⁻¹的容量。每循环的容量衰减仅为0.017%。该电池在50℃和-5℃时也表现出更好的温度耐受性。通过X射线衍射图谱和恒电流间歇滴定技术分析得到的低内阻、二元硫化物第一性原理计算得到的窄带隙和高态密度,确保了Na⁺/e⁻的快速传输。使用二元金属硫化物杂化纳米笼作为负极的长循环寿命钠离子电池在多功能电子设备中显示出广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验