Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
FASEB J. 2023 Jul;37(7):e22981. doi: 10.1096/fj.202300366R.
Oral and gut microbiomes are important for the maintenance of homeostasis in the human body. Altered or disturbed mutualism between their members results in dysbiosis with local injury and subsequent systemic diseases. The high bacterial density causes intense competition among microbiome residents to acquire nutrients, including iron and heme, the latter of high importance for heme auxotrophic members of the Bacteroidetes phylum. Our main hypothesis is that the heme acquisition mechanism, with the leading role played by a novel HmuY family of hemophore-like proteins, can be used to fulfill nutritional requirements and increase virulence. We characterized HmuY homologs expressed by Bacteroides fragilis and compared their properties with the first representative of this family, the HmuY protein of Porphyromonas gingivalis. In contrast to other Bacteroidetes members, B. fragilis produces three HmuY homologs (Bfr proteins). All bfr transcripts were produced at higher levels in bacteria starved of iron and heme (fold change increase ~60, ~90, and ~70 for bfrA, bfrB, and bfrC, respectively). X-ray protein crystallography showed that B. fragilis Bfr proteins are structurally similar to P. gingivalis HmuY and to other homologs, except for differences in the potential heme-binding pockets. BfrA binds heme, mesoheme, and deuteroheme, but preferentially under reducing conditions, using Met175 and Met146 to coordinate heme iron. BfrB binds iron-free protoporphyrin IX and coproporphyrin III, whereas BfrC does not bind porphyrins. HmuY is capable of heme sequestration from BfrA, which might increase the ability of P. gingivalis to cause dysbiosis also in the gut microbiome.
口腔和肠道微生物组对于维持人体内部的动态平衡至关重要。其成员之间相互作用的改变或失调会导致微生态失调,引发局部损伤,并进一步导致全身性疾病。由于细菌密度较高,微生物组居民之间会展开激烈的营养竞争,包括铁和血红素。血红素对于拟杆菌门的血红素营养缺陷成员非常重要。我们的主要假设是,血红素获取机制(以新型 HmuY 家族的血红素结合蛋白为主导)可用于满足营养需求并提高毒力。我们对脆弱拟杆菌中表达的 HmuY 同源物进行了表征,并将其特性与该家族的第一个代表——牙龈卟啉单胞菌的 HmuY 蛋白进行了比较。与其他拟杆菌成员不同的是,脆弱拟杆菌产生了三种 HmuY 同源物(Bfr 蛋白)。在缺铁和血红素饥饿的细菌中,所有 bfr 转录物的产生水平都更高(bfrA、bfrB 和 bfrC 的 fold change 分别增加约 60、90 和 70)。X 射线蛋白晶体学显示,脆弱拟杆菌的 Bfr 蛋白在结构上与牙龈卟啉单胞菌的 HmuY 蛋白以及其他同源物相似,但在潜在的血红素结合口袋存在差异。BfrA 结合血红素、mesoheme 和 deuteroheme,但在还原条件下优先结合,利用 Met175 和 Met146 来配位血红素铁。BfrB 结合无铁原卟啉 IX 和粪卟啉 III,而 BfrC 则不结合卟啉。HmuY 能够从 BfrA 中抢夺血红素,这可能会增加牙龈卟啉单胞菌在肠道微生物组中引起微生态失调的能力。