Zheng Yongsen, Wei Pengxu, Chen Ziliang, Tang Chengpei, Lin Liang
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14233-14246. doi: 10.1109/TNNLS.2023.3276395. Epub 2024 Oct 7.
To facilitate more accurate and explainable recommendation, it is crucial to incorporate side information into user-item interactions. Recently, knowledge graph (KG) has attracted much attention in a variety of domains due to its fruitful facts and abundant relations. However, the expanding scale of real-world data graphs poses severe challenges. In general, most existing KG-based algorithms adopt exhaustively hop-by-hop enumeration strategy to search all the possible relational paths, this manner involves extremely high-cost computations and is not scalable with the increase of hop numbers. To overcome these difficulties, in this article, we propose an end-to-end framework Knowledge-tree-routed UseR-Interest Trajectories Network (KURIT-Net). KURIT-Net employs the user-interest Markov trees (UIMTs) to reconfigure a recommendation-based KG, striking a good balance for routing knowledge between short-distance and long-distance relations between entities. Each tree starts from the preferred items for a user and routes the association reasoning paths along the entities in the KG to provide a human-readable explanation for model prediction. KURIT-Net receives entity and relation trajectory embedding (RTE) and fully reflects potential interests of each user by summarizing all reasoning paths in a KG. Besides, we conduct extensive experiments on six public datasets, our KURIT-Net significantly outperforms state-of-the-art approaches and shows its interpretability in recommendation.
为了促进更准确和可解释的推荐,将辅助信息纳入用户-项目交互至关重要。近年来,知识图谱(KG)因其丰富的事实和大量的关系在各个领域备受关注。然而,现实世界数据图规模的不断扩大带来了严峻挑战。一般来说,大多数现有的基于知识图谱的算法采用逐跳穷举枚举策略来搜索所有可能的关系路径,这种方式涉及极高的计算成本,并且随着跳数的增加不可扩展。为了克服这些困难,在本文中,我们提出了一个端到端框架——知识树路由用户兴趣轨迹网络(KURIT-Net)。KURIT-Net使用用户兴趣马尔可夫树(UIMT)来重新配置基于推荐的知识图谱,在实体之间的短距离和长距离关系之间的知识路由上取得了良好的平衡。每棵树从用户的偏好项目开始,沿着知识图谱中的实体路由关联推理路径,为模型预测提供人类可读的解释。KURIT-Net接收实体和关系轨迹嵌入(RTE),并通过总结知识图谱中的所有推理路径,充分反映每个用户的潜在兴趣。此外,我们在六个公共数据集上进行了广泛的实验,我们的KURIT-Net显著优于现有最先进的方法,并在推荐中显示出其可解释性。