Kumar Srijan, Zhang Xikun, Leskovec Jure
Stanford University, USA and Georgia Institute of Technology, USA.
University of Illinois, Urbana-Champaign, USA.
KDD. 2019 Aug;2019:1269-1278. doi: 10.1145/3292500.3330895.
Modeling sequential interactions between users and items/products is crucial in domains such as e-commerce, social networking, and education. Representation learning presents an attractive opportunity to model the dynamic evolution of users and items, where each user/item can be embedded in a Euclidean space and its evolution can be modeled by an embedding trajectory in this space. However, existing dynamic embedding methods generate embeddings only when users take actions and do not explicitly model the future trajectory of the user/item in the embedding space. Here we propose , a coupled recurrent neural network model that learns the embedding trajectories of users and items. employs two recurrent neural networks to update the embedding of a user and an item at every interaction. Crucially, also models the future embedding trajectory of a user/item. To this end, it introduces a novel projection operator that learns to estimate the embedding of the user at any time in the future. These estimated embeddings are then used to predict future user-item interactions. To make the method scalable, we develop a algorithm that creates time-consistent batches and leads to 9× faster training. We conduct six experiments to validate on two prediction tasks- future interaction prediction and state change prediction-using four real-world datasets. We show that outperforms six state-of-the-art algorithms in these tasks by at least 20% in predicting future interactions and 12% in state change prediction.
对用户与商品/产品之间的序列交互进行建模在电子商务、社交网络和教育等领域至关重要。表示学习为对用户和商品的动态演变进行建模提供了一个有吸引力的机会,其中每个用户/商品都可以嵌入到欧几里得空间中,并且其演变可以通过该空间中的嵌入轨迹来建模。然而,现有的动态嵌入方法仅在用户采取行动时生成嵌入,并未明确对用户/商品在嵌入空间中的未来轨迹进行建模。在此,我们提出了一种耦合循环神经网络模型,该模型可学习用户和商品的嵌入轨迹。该模型采用两个循环神经网络在每次交互时更新用户和商品的嵌入。至关重要的是,它还对用户/商品的未来嵌入轨迹进行建模。为此,它引入了一种新颖的投影算子,该算子学习估计用户在未来任何时间的嵌入。然后,这些估计的嵌入用于预测未来的用户-商品交互。为了使该方法具有可扩展性,我们开发了一种算法,该算法创建时间一致的批次,使训练速度提高9倍。我们进行了六项实验,使用四个真实世界的数据集在两个预测任务(未来交互预测和状态变化预测)上验证该模型。我们表明,在这些任务中,该模型在预测未来交互方面比六种最先进的算法至少高出20%,在状态变化预测方面高出12%。