文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Computational structural-based GPCR optimization for user-defined ligand: Implications for the development of biosensors.

作者信息

Di Rienzo Lorenzo, Miotto Mattia, Milanetti Edoardo, Ruocco Giancarlo

机构信息

Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.

Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.

出版信息

Comput Struct Biotechnol J. 2023 May 9;21:3002-3009. doi: 10.1016/j.csbj.2023.05.004. eCollection 2023.


DOI:10.1016/j.csbj.2023.05.004
PMID:37249971
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10220229/
Abstract

Organisms have developed effective mechanisms to sense the external environment. Human-designed biosensors exploit this natural optimization, where different biological machinery have been adapted to detect the presence of user-defined molecules. Specifically, the pheromone pathway in the model organism Saccharomyces cerevisiae represents a suitable candidate as a synthetic signaling system. Indeed, it expresses just one G-Protein Coupled Receptor (GPCR), Ste2, able to recognize pheromone and initiate the expression of pheromone-dependent genes. To date, the standard procedure to engineer this system relies on the substitution of the yeast GPCR with another one and on the modification of the yeast G-protein to bind the inserted receptor. Here, we propose an innovative computational procedure, based on geometrical and chemical optimization of protein binding pockets, to select the amino acid substitutions required to make the native yeast GPCR able to recognize a user-defined ligand. This procedure would allow the yeast to recognize a wide range of ligands, without a-priori knowledge about a GPCR recognizing them or the corresponding G protein. We used Monte Carlo simulations to design on Ste2 a binding pocket able to recognize epinephrine, selected as a test ligand. We validated Ste2 mutants via molecular docking and molecular dynamics. We verified that the amino acid substitutions we identified make Ste2 able to accommodate and remain firmly bound to epinephrine. Our results indicate that we sampled efficiently the huge space of possible mutants, proposing such a strategy as a promising starting point for the development of a new kind of S.cerevisiae-based biosensors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/bdb48b8bd12d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/b6a72a7686a4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/64e1ce866845/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/3f9bf952482d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/1d9c8db1e7cf/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/dcaa27aabe36/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/bdb48b8bd12d/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/b6a72a7686a4/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/64e1ce866845/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/3f9bf952482d/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/1d9c8db1e7cf/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/dcaa27aabe36/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7810/10220229/bdb48b8bd12d/gr5.jpg

相似文献

[1]
Computational structural-based GPCR optimization for user-defined ligand: Implications for the development of biosensors.

Comput Struct Biotechnol J. 2023-5-9

[2]
Unnatural amino acid replacement in a yeast G protein-coupled receptor in its native environment.

Biochemistry. 2008-5-20

[3]
Specific α-arrestins negatively regulate Saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor Ste2.

Mol Cell Biol. 2014-7

[4]
The directed evolution of ligand specificity in a GPCR and the unequal contributions of efficacy and affinity.

Sci Rep. 2017-11-22

[5]
Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.

Biotechnol Bioeng. 2017-6

[6]
Creation of GPCR-based chemical sensors by directed evolution in yeast.

Protein Eng Des Sel. 2006-1

[7]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[8]
Quaternary structure of the yeast pheromone receptor Ste2 in living cells.

Biochim Biophys Acta Biomembr. 2016-12-16

[9]
GPCR receptor phosphorylation and endocytosis are not necessary to switch polarized growth between internal cues during pheromone response in .

Commun Integr Biol. 2020-8-20

[10]
Functional expression of the yeast alpha-factor receptor in Xenopus oocytes.

J Biol Chem. 1989-12-15

引用本文的文献

[1]
Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments.

Chem Rev. 2024-4-10

[2]
Design of protein-binding peptides with controlled binding affinity: the case of SARS-CoV-2 receptor binding domain and angiotensin-converting enzyme 2 derived peptides.

Front Mol Biosci. 2024-1-5

本文引用的文献

[1]
Directed Evolution of Herbicide Biosensors in a Fluorescence-Activated Cell-Sorting-Compatible Yeast Two-Hybrid Platform.

ACS Synth Biol. 2022-8-19

[2]
Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds.

Nat Biotechnol. 2022-12

[3]
Shape Complementarity Optimization of Antibody-Antigen Interfaces: The Application to SARS-CoV-2 Spike Protein.

Front Mol Biosci. 2022-5-20

[4]
Activation mechanism of the class D fungal GPCR dimer Ste2.

Nature. 2022-3

[5]
Evolving a Generalist Biosensor for Bicyclic Monoterpenes.

ACS Synth Biol. 2022-1-21

[6]
Binding site identification of G protein-coupled receptors through a 3D Zernike polynomials-based method: application to C. elegans olfactory receptors.

J Comput Aided Mol Des. 2022-1

[7]
Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals.

Cell Syst. 2022-3-16

[8]
Quantitative Description of Surface Complementarity of Antibody-Antigen Interfaces.

Front Mol Biosci. 2021-9-30

[9]
A rational blueprint for the design of chemically-controlled protein switches.

Nat Commun. 2021-10-1

[10]
Design principles of protein switches.

Curr Opin Struct Biol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索