Sonnleitner Elisabeth, Bassani Flavia, Cianciulli Sesso Anastasia, Brear Paul, Lilic Branislav, Davidovski Lovro, Resch Armin, Luisi Ben F, Moll Isabella, Bläsi Udo
Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria.
Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria.
Front Microbiol. 2023 May 12;14:1195558. doi: 10.3389/fmicb.2023.1195558. eCollection 2023.
In the opportunistic human pathogen (), arbon atabolite epression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the atabolite epression ontrol protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq. Here, we asked whether Crc action can be modulated to relieve CCR after exhaustion of a preferred carbon source. As Crc does not bind to RNA , we endeavored to identify an interacting protein. co-purification studies, co-immunoprecipitation and biophysical assays revealed that Crc binds to strain O1 protein PA1677. Our structural studies support bioinformatics analyzes showing that PA1677 belongs to the isochorismatase-like superfamily. Ectopic expression of PA resulted in de-repression of Hfq/Crc controlled target genes, while in the absence of the protein, an extended lag phase is observed during diauxic growth on a preferred and a non-preferred carbon source. This observations indicate that PA1677 acts as an antagonist of Crc that favors synthesis of proteins required to metabolize non-preferred carbon sources. We present a working model wherein PA1677 diminishes the formation of productive Hfq/Crc repressive complexes on target mRNAs by titrating Crc. Accordingly, we propose the name CrcA (atabolite epression ontrol protein ntagonist) for PA1677.
在机会性人类病原体()中,碳代谢物阻遏(CCR)协调氮源和碳源的分级利用,并影响毒力、抗生素抗性和生物膜形成。在CCR过程中,RNA伴侣蛋白Hfq和碳代谢物阻遏控制蛋白Crc在靶mRNA上形成组装体,阻碍参与利用较不偏好的碳源进行摄取和分解代谢的蛋白质的翻译。在偏好的碳源耗尽后,靶基因的翻译抑制通过调节性RNA CrcZ得以缓解,CrcZ与Hfq结合并充当其诱饵。在此,我们探讨了在偏好的碳源耗尽后,是否可以调节Crc的作用来缓解CCR。由于Crc不与RNA结合,我们致力于鉴定一种相互作用蛋白。共纯化研究、免疫共沉淀和生物物理分析表明,Crc与菌株O1蛋白PA1677结合。我们的结构研究支持生物信息学分析,显示PA1677属于异分支酸酶样超家族。PA的异位表达导致Hfq/Crc控制的靶基因去阻遏,而在缺乏该蛋白的情况下,在偏好和非偏好碳源上进行双相生长时会观察到延长的迟缓期。这些观察结果表明,PA1677作为Crc的拮抗剂,有利于合成代谢非偏好碳源所需的蛋白质。我们提出了一个工作模型,其中PA1677通过滴定Crc减少靶mRNA上有生产性的Hfq/Crc抑制复合物的形成。因此,我们为PA1677提议命名为CrcA(碳代谢物阻遏控制蛋白拮抗剂)。