Suppr超能文献

细菌II类果糖双磷酸醛缩酶热适应性结构热稳定性的网络基础

Network Basis for the Heat-Adapted Structural Thermostability of Bacterial Class II Fructose Bisphosphate Aldolase.

作者信息

Wang Guangyu

机构信息

Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California 95616, United States.

出版信息

ACS Omega. 2023 May 11;8(20):17731-17739. doi: 10.1021/acsomega.3c00473. eCollection 2023 May 23.

Abstract

The sufficient structural thermostability of a biological macromolecule is an overriding need for green nanoreactors and nanofactories to secure high activity. However, little is still known about what specific structural motif is responsible for it. Here, graph theory was employed to examine if the temperature-dependent noncovalent interactions and metal bridges, as identified in the structures of class II fructose 1,6-bisphosphate aldolase, could shape a systematic fluidic grid-like mesh network with topological grids to regulate the structural thermostability of the wild-type construct and its evolved variants in each generation upon decyclization. The results indicated that the biggest grids may govern the temperature thresholds for their tertiary structural perturbations but without affecting the catalytic activities. Moreover, lower grid-based systematic thermal instability may facilitate structural thermostability, but a highly independent thermostable grid may still be required to serve as a critical anchor to secure the stereospecific thermoactivity. Its end melting temperature thresholds, together with the start ones of the biggest grids in the evolved variants, may confer high temperature sensitivity against thermal inactivation. Collectively, this computational study may have widespread significance in advancing our complete understanding and biotechnology of the thermoadaptive mechanism of the structural thermostability of a biological macromolecule.

摘要

生物大分子具备足够的结构热稳定性,是绿色纳米反应器和纳米工厂确保高活性的首要需求。然而,对于究竟是何种特定结构基序导致这一现象,我们仍知之甚少。在此,我们运用图论来研究,如在II类果糖1,6 - 二磷酸醛缩酶结构中所确定的温度依赖性非共价相互作用和金属桥,是否能够形成一个具有拓扑网格的系统性流体网格状网状网络,以调控野生型构建体及其在每一代去环化后的进化变体的结构热稳定性。结果表明,最大的网格可能决定其三级结构扰动的温度阈值,但不影响催化活性。此外,基于较低网格的系统性热不稳定性可能有助于结构热稳定性,但可能仍需要一个高度独立的热稳定网格作为关键锚点,以确保立体特异性热活性。其最终熔化温度阈值,连同进化变体中最大网格的起始温度阈值,可能赋予对热失活的高温敏感性。总体而言,这项计算研究对于推动我们全面理解生物大分子结构热稳定性的热适应机制以及生物技术应用可能具有广泛意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d6/10210171/edd6b96967c1/ao3c00473_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验