Suppr超能文献

金属依赖型果糖-1,6-二磷酸醛缩酶催化循环中的活性位点重塑。

Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.

机构信息

From the Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.

From the Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada

出版信息

J Biol Chem. 2018 May 18;293(20):7737-7753. doi: 10.1074/jbc.RA117.001098. Epub 2018 Mar 28.

Abstract

Crystal structures of two bacterial metal (Zn)-dependent d-fructose-1,6-bisphosphate (FBP) aldolases in complex with substrate, analogues, and triose-P reaction products were determined to 1.5-2.0 Å resolution. The ligand complexes cryotrapped in native or mutant aldolase crystals enabled a novel mechanistic description of FBP C3-C4 bond cleavage. The reaction mechanism uses active site remodeling during the catalytic cycle, implicating relocation of the Zn cofactor that is mediated by conformational changes of active site loops. Substrate binding initiates conformational changes triggered upon P1 phosphate binding, which liberates the Zn-chelating His-180, allowing it to act as a general base for the proton abstraction at the FBP C4 hydroxyl group. A second zinc-chelating His-83 hydrogen bonds the substrate C4 hydroxyl group and assists cleavage by stabilizing the developing negative charge during proton abstraction. Cleavage is concerted with relocation of the metal cofactor from an interior to a surface-exposed site, thereby stabilizing the nascent enediolate form. Conserved residue Glu-142 is essential for protonation of the enediolate form prior to product release. A d-tagatose 1,6-bisphosphate enzymatic complex reveals how His-180-mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and d-glyceraldehyde 3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp-82 and Asp-255, respectively, and are crucial aspects of the enzyme's role in gluconeogenesis. Conformational changes in mobile loops β5-α7 and β6-α8 (containing catalytic residues Glu-142 and His-180, respectively) drive active site remodeling, enabling the relocation of the metal cofactor.

摘要

两种细菌金属(Zn)依赖性 d-果糖-1,6-双磷酸(FBP)醛缩酶与底物、类似物和三碳磷酸反应产物复合物的晶体结构已解析至 1.5-2.0Å 分辨率。配体复合物在天然或突变醛缩酶晶体中冷冻捕获,使我们能够对 FBP C3-C4 键断裂的新机制进行描述。该反应机制在催化循环中使用活性位点重塑,涉及 Zn 辅因子的重定位,这是由活性位点环构象变化介导的。底物结合引发 P1 磷酸结合引发的构象变化,释放 Zn 螯合 His-180,使其能够作为 FBP C4 羟基的质子供体。第二个锌螯合 His-83 与底物 C4 羟基形成氢键,并通过在质子抽提过程中稳定发展中的负电荷来协助切割。切割与金属辅因子从内部到表面暴露位置的重定位协同进行,从而稳定新生的烯醇化物形式。保守残基 Glu-142 对于在产物释放之前烯醇化物形式的质子化是必不可少的。d-塔格糖 1,6-双磷酸酶复合物揭示了 His-180 介导的质子抽提如何控制裂解反应的立体特异性。产物二羟丙酮-P 和 d-甘油醛 3-P 的识别和区分是通过三碳磷酸羟基与保守残基 Asp-82 和 Asp-255 之间的电荷氢键发生的,这是酶在糖异生中作用的重要方面。可移动环 β5-α7 和 β6-α8(分别包含催化残基 Glu-142 和 His-180)中的构象变化驱动活性位点重塑,使金属辅因子能够重新定位。

相似文献

1
Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases.
J Biol Chem. 2018 May 18;293(20):7737-7753. doi: 10.1074/jbc.RA117.001098. Epub 2018 Mar 28.
3
Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
Eur J Biochem. 2000 Mar;267(6):1858-68. doi: 10.1046/j.1432-1327.2000.01191.x.
4
High resolution reaction intermediates of rabbit muscle fructose-1,6-bisphosphate aldolase: substrate cleavage and induced fit.
J Biol Chem. 2005 Jul 22;280(29):27262-70. doi: 10.1074/jbc.M502413200. Epub 2005 May 3.
8
Isomer activation controls stereospecificity of class I fructose-1,6-bisphosphate aldolases.
J Biol Chem. 2017 Dec 1;292(48):19849-19860. doi: 10.1074/jbc.M117.811034. Epub 2017 Sep 27.
9
Structure of a class I tagatose-1,6-bisphosphate aldolase: investigation into an apparent loss of stereospecificity.
J Biol Chem. 2010 Jul 2;285(27):21143-52. doi: 10.1074/jbc.M109.080358. Epub 2010 Apr 28.

引用本文的文献

3
The metal cofactor: stationary or mobile?
Appl Microbiol Biotechnol. 2024 Jun 24;108(1):391. doi: 10.1007/s00253-024-13206-2.
6
Thermal Ring-Based Heat Switches in Hyperthermophilic Class II Bacterial Fructose Aldolase.
ACS Omega. 2023 Jun 27;8(27):24624-24634. doi: 10.1021/acsomega.3c03001. eCollection 2023 Jul 11.
7
Network Basis for the Heat-Adapted Structural Thermostability of Bacterial Class II Fructose Bisphosphate Aldolase.
ACS Omega. 2023 May 11;8(20):17731-17739. doi: 10.1021/acsomega.3c00473. eCollection 2023 May 23.
8
Substrate Induced Movement of the Metal Cofactor between Active and Resting State.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202213338. doi: 10.1002/anie.202213338. Epub 2022 Nov 9.
9
New mechanisms for bacterial degradation of sulfoquinovose.
Biosci Rep. 2022 Oct 28;42(10). doi: 10.1042/BSR20220314.
10
Comparative Proteome Analysis Indicates The Divergence between The Head and Tail Regeneration in Planarian.
Cell J. 2021 Nov;23(6):640-649. doi: 10.22074/cellj.2021.7689. Epub 2021 Nov 23.

本文引用的文献

2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.
J Biol Chem. 2015 May 1;290(18):11293-308. doi: 10.1074/jbc.M114.611830. Epub 2015 Mar 18.
5
A series of PDB-related databanks for everyday needs.
Nucleic Acids Res. 2015 Jan;43(Database issue):D364-8. doi: 10.1093/nar/gku1028. Epub 2014 Oct 28.
6
A noncompetitive inhibitor for Mycobacterium tuberculosis's class IIa fructose 1,6-bisphosphate aldolase.
Biochemistry. 2014 Jan 14;53(1):202-13. doi: 10.1021/bi401022b. Epub 2013 Dec 24.
7
Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis.
Biochemistry. 2013 Feb 5;52(5):912-25. doi: 10.1021/bi300928u. Epub 2013 Jan 18.
8
Conformation-changing aggregation in hydroxyacetone: a combined low-temperature FTIR, jet, and crystallographic study.
J Am Chem Soc. 2011 Dec 21;133(50):20194-207. doi: 10.1021/ja2030646. Epub 2011 Nov 23.
9
An introduction to biomolecular graphics.
PLoS Comput Biol. 2010 Aug 26;6(8):e1000918. doi: 10.1371/journal.pcbi.1000918.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验