文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金纳米颗粒增强质子束辐射下细胞在扩展布拉格峰处活性氧的产生

Gold-Nanoparticles-Enhanced Production of Reactive Oxygen Species in Cells at Spread-Out Bragg Peak under Proton Beam Radiation.

作者信息

Lo Chang-Yun, Tsai Shiao-Wen, Niu Huan, Chen Fang-Hsin, Hwang Hsiao-Chien, Chao Tsi-Chian, Hsiao Ing-Tsung, Liaw Jiunn-Woei

机构信息

Department of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan.

Department of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan.

出版信息

ACS Omega. 2023 May 9;8(20):17922-17931. doi: 10.1021/acsomega.3c01025. eCollection 2023 May 23.


DOI:10.1021/acsomega.3c01025
PMID:37251180
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10210040/
Abstract

This study investigates the radiobiological effects of gold nanoparticles (GNPs) as radiosensitizers for proton beam therapy (PBT). Specifically, we explore the enhanced production of reactive oxygen species (ROS) in GNP-loaded tumor cells irradiated by a 230 MeV proton beam in a spread-out Bragg peak (SOBP) zone obtained by a passive scattering system. Our findings indicate that the radiosensitization enhancement factor is 1.24 at 30% cell survival fraction, 8 days after 6 Gy proton beam irradiation. Since protons deposit the majority of their energy at the SOBP region and interact with GNPs to induce more ejected electrons from the high-Z GNPs, these ejected electrons then react with water molecules to produce excessive ROS that can damage cellular organelles. Laser scanning confocal microscopy reveals the excessive ROS induced inside the GNP-loaded cells immediately after proton irradiation. Furthermore, the damage to cytoskeletons and mitochondrial dysfunction in GNP-loaded cells caused by the induced ROS becomes significantly severe, 48 h after proton irradiation. Our biological evidence suggests that the cytotoxicity of GNP-enhanced ROS production has the potential to increase the tumoricidal efficacy of PBT.

摘要

本研究调查了金纳米颗粒(GNPs)作为质子束疗法(PBT)放射增敏剂的放射生物学效应。具体而言,我们探究了在通过被动散射系统获得的扩展布拉格峰(SOBP)区域中,由230 MeV质子束照射负载GNP的肿瘤细胞时,活性氧(ROS)生成的增强情况。我们的研究结果表明,在6 Gy质子束照射8天后,细胞存活分数为30%时,放射增敏增强因子为1.24。由于质子将其大部分能量沉积在SOBP区域,并与GNPs相互作用,从高原子序数的GNPs中诱导出更多的出射电子,这些出射电子随后与水分子反应产生过量的ROS,从而损害细胞器。激光扫描共聚焦显微镜显示,质子照射后立即在负载GNP的细胞内诱导产生了过量的ROS。此外,质子照射48小时后,由诱导产生的ROS对负载GNP的细胞造成的细胞骨架损伤和线粒体功能障碍变得明显严重。我们的生物学证据表明,GNP增强ROS生成的细胞毒性有可能提高PBT的杀肿瘤疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/e67c7f29fe39/ao3c01025_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/c646ae78f116/ao3c01025_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/36d478a729f3/ao3c01025_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/1770a9d8dcf4/ao3c01025_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/db6113331d88/ao3c01025_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/4fe4a1dfcdb2/ao3c01025_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/ae119f632834/ao3c01025_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/a12c80353729/ao3c01025_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/f589f7011470/ao3c01025_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/868c4f3e28a0/ao3c01025_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/c0ca676ecb33/ao3c01025_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/3f0d0c87240a/ao3c01025_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/e67c7f29fe39/ao3c01025_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/c646ae78f116/ao3c01025_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/36d478a729f3/ao3c01025_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/1770a9d8dcf4/ao3c01025_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/db6113331d88/ao3c01025_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/4fe4a1dfcdb2/ao3c01025_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/ae119f632834/ao3c01025_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/a12c80353729/ao3c01025_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/f589f7011470/ao3c01025_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/868c4f3e28a0/ao3c01025_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/c0ca676ecb33/ao3c01025_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/3f0d0c87240a/ao3c01025_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/10210040/e67c7f29fe39/ao3c01025_0013.jpg

相似文献

[1]
Gold-Nanoparticles-Enhanced Production of Reactive Oxygen Species in Cells at Spread-Out Bragg Peak under Proton Beam Radiation.

ACS Omega. 2023-5-9

[2]
Gold Nanoparticles Enhancing Generation of ROS for Cs-137 Radiotherapy.

Nanoscale Res Lett. 2022-12-14

[3]
Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.

Med Phys. 2015-10

[4]
Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak.

Radiat Oncol. 2017-7-3

[5]
The Effect of Quasi-Spherical Gold Nanoparticles on Two-Photon Induced Reactive Oxygen Species for Cell Damage.

Nanomaterials (Basel). 2021-4-30

[6]
Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases.

Exp Mol Med. 2008-2-29

[7]
Effect of 5-fluorouracil on cellular response to proton beam in esophageal cancer cell lines according to the position of spread-out Bragg peak.

Acta Oncol. 2019-1-11

[8]
Therapeutic Efficacy of Variable Biological Effectiveness of Proton Therapy in U-CH2 and MUG-Chor1 Human Chordoma Cell Death.

Cancers (Basel). 2021-12-4

[9]
Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species' Distributions Around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering.

Int J Mol Sci. 2019-9-1

[10]
Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy.

Phys Med Biol. 2015-5-21

引用本文的文献

[1]
Radiotherapeutic efficacy of gold nanoparticles for high dose-rate brachytherapy compared to conventional radiotherapy: An in vitro study.

Med Phys. 2025-7

[2]
Therapeutic potential of gold nanoparticles in cancer therapy: a comparative insight into synthesis overview and cellular mechanisms.

Med Oncol. 2025-7-10

[3]
An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities.

Molecules. 2025-2-24

[4]
Exploring the Potential of Gold Nanoparticles in Proton Therapy: Mechanisms, Advances, and Clinical Horizons.

Pharmaceutics. 2025-1-30

[5]
Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy.

Nanomaterials (Basel). 2025-2-19

[6]
Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization.

Cells. 2024-11-7

[7]
Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy.

Int J Mol Sci. 2024-9-2

[8]
Photothermal and radiotherapy with alginate-coated gold nanoparticles for breast cancer treatment.

Sci Rep. 2024-6-10

[9]
Binary Proton Therapy of Ehrlich Carcinoma Using Targeted Gold Nanoparticles.

Dokl Biochem Biophys. 2024-6

本文引用的文献

[1]
Gold Nanoparticles Enhancing Generation of ROS for Cs-137 Radiotherapy.

Nanoscale Res Lett. 2022-12-14

[2]
Proton induced DNA double strand breaks at the Bragg peak: Evidence of enhanced LET effect.

Front Oncol. 2022-8-5

[3]
Moderately Hypofractionated Proton Beam Therapy for Locally Advanced Non-Small Cell Lung Cancer: A New Way Forward for Dose Escalation?

Int J Radiat Oncol Biol Phys. 2022-7-15

[4]
Comparing Geant4 physics models for proton-induced dose deposition and radiolysis enhancement from a gold nanoparticle.

Sci Rep. 2022-2-2

[5]
Comparative analysis of the immune responses in cancer cells irradiated with X-ray, proton and carbon-ion beams.

Biochem Biophys Res Commun. 2021-12-31

[6]
Radiosensitization Effect of Gold Nanoparticles in Proton Therapy.

Front Public Health. 2021

[7]
Biological Effective Dose for Treatment of a Heterogeneous Population of Cells with a Spread-Out Bragg Peak of Particle Radiation.

Radiat Res. 2021-10-1

[8]
Proton Beam Therapy for Local Recurrence of Rectal Cancer.

Anticancer Res. 2021-7

[9]
High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak.

Front Oncol. 2021-6-10

[10]
Physical and Biological Characteristics of Particle Therapy for Oncologists.

Cancer Res Treat. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索