Travis Skye, Green Keith D, Thamban Chandrika Nishad, Pang Allan H, Frantom Patrick A, Tsodikov Oleg V, Garneau-Tsodikova Sylvie, Thompson Matthew K
Department of Chemistry & Biochemistry, The University of Alabama Box 870336, 250 Hackberry Lane Tuscaloosa AL 35487 USA
Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone St. Lexington KY 40536 USA.
RSC Med Chem. 2023 Apr 24;14(5):947-956. doi: 10.1039/d3md00113j. eCollection 2023 May 25.
Antimicrobial resistance (AMR) poses a significant threat to human health around the world. Though bacterial pathogens can develop resistance through a variety of mechanisms, one of the most prevalent is the production of antibiotic-modifying enzymes like FosB, a Mn-dependent l-cysteine or bacillithiol (BSH) transferase that inactivates the antibiotic fosfomycin. FosB enzymes are found in pathogens such as , one of the leading pathogens in deaths associated with AMR. gene knockout experiments establish FosB as an attractive drug target, showing that the minimum inhibitory concentration (MIC) of fosfomycin is greatly reduced upon removal of the enzyme. Herein, we have identified eight potential inhibitors of the FosB enzyme from by applying high-throughput screening of the ZINC15 database with structural similarity to phosphonoformate, a known FosB inhibitor. In addition, we have obtained crystal structures of FosB complexes to each compound. Furthermore, we have kinetically characterized the compounds with respect to inhibition of FosB. Finally, we have performed synergy assays to determine if any of the new compounds lower the MIC of fosfomycin in . Our results will inform future studies on inhibitor design for the FosB enzymes.
抗生素耐药性(AMR)对全球人类健康构成重大威胁。尽管细菌病原体可通过多种机制产生耐药性,但最普遍的机制之一是产生抗生素修饰酶,如FosB,一种锰依赖性L-半胱氨酸或杆菌硫醇(BSH)转移酶,可使抗生素磷霉素失活。FosB酶存在于诸如[具体病原体名称缺失]等病原体中,[具体病原体名称缺失]是与AMR相关死亡的主要病原体之一。基因敲除实验表明FosB是一个有吸引力的药物靶点,结果显示去除该酶后磷霉素的最低抑菌浓度(MIC)大幅降低。在此,我们通过对ZINC15数据库进行高通量筛选,从[筛选来源缺失]中鉴定出八种与已知FosB抑制剂膦甲酸结构相似的FosB酶潜在抑制剂。此外,我们还获得了FosB与每种化合物的复合物晶体结构。此外,我们对这些化合物抑制FosB的动力学特性进行了表征。最后,我们进行了协同试验,以确定是否有任何新化合物能降低[具体测试对象缺失]中磷霉素的MIC。我们的结果将为未来FosB酶抑制剂设计的研究提供参考。