文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D打印技术在Hoffa骨折不愈合治疗中的应用。

Application of 3D Printing Technology in the Treatment of Hoffa's Fracture Nonunion.

作者信息

Mendonça Celso Júnio Aguiar, Gasoto Sidney Carlos, Belo Ivan Moura, Setti João Antônio Palma, Soni Jamil Faissal, Júnior Bertoldo Schneider

机构信息

Unidade do Sistema Musculoesquelético, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brasil.

Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil.

出版信息

Rev Bras Ortop (Sao Paulo). 2022 Oct 3;58(2):303-312. doi: 10.1055/s-0042-1750760. eCollection 2023 Apr.


DOI:10.1055/s-0042-1750760
PMID:37252303
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10212646/
Abstract

To evaluate a proposed three-dimensional (3D) printing process of a biomodel developed with the aid of fused deposition modeling (FDM) technology based on computed tomography (CT) scans of an individual with nonunion of a coronal femoral condyle fracture (Hoffa's fracture).  Thus, we used CT scans, which enable the evaluation of the 3D volumetric reconstruction of the anatomical model, as well as of the architecture and bone geometry of sites with complex anatomy, such as the joints. In addition, it enables the development of the virtual surgical planning (VSP) in a computer-aided design (CAD) software. This technology makes it possible to print full-scale anatomical models that can be used in surgical simulations for training and in the choice of the best placement of the implant according to the VSP. In the radiographic evaluation of the osteosynthesis of the Hoffa's fracture nonunion, we assessed the position of the implant in the 3D-printed anatomical model and in the patient's knee.  The 3D-printed anatomical model showed geometric and morphological characteristics similar to those of the actual bone. The position of the implants in relation to the nonunion line and anatomical landmarks showed great accuracy in the comparison of the patient's knee with the 3D-printed anatomical model.  The use of the virtual anatomical model and the 3D-printed anatomical model with the additive manufacturing (AM) technology proved to be effective and useful in planning and performing the surgical treatment of Hoffa's fracture nonunion. Thus, it showed great accuracy in the reproducibility of the virtual surgical planning and the 3D-printed anatomical model.

摘要

为评估一种基于股骨髁冠状面骨折(霍法骨折)不愈合个体的计算机断层扫描(CT)扫描结果,借助熔融沉积建模(FDM)技术开发生物模型的三维(3D)打印工艺。因此,我们使用了CT扫描,它能够评估解剖模型的3D体积重建,以及关节等解剖结构复杂部位的结构和骨骼几何形状。此外,它还能在计算机辅助设计(CAD)软件中进行虚拟手术规划(VSP)。这项技术使打印全尺寸解剖模型成为可能,这些模型可用于手术模拟训练,并根据VSP选择植入物的最佳放置位置。在霍法骨折不愈合的骨固定影像学评估中,我们评估了植入物在3D打印解剖模型和患者膝关节中的位置。3D打印的解剖模型显示出与实际骨骼相似的几何和形态特征。在将患者膝关节与3D打印解剖模型进行比较时,植入物相对于不愈合线和解剖标志的位置显示出很高的准确性。事实证明,使用虚拟解剖模型和3D打印解剖模型以及增材制造(AM)技术在规划和实施霍法骨折不愈合的手术治疗方面是有效且有用的。因此,它在虚拟手术规划和3D打印解剖模型的再现性方面显示出很高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/de355df95009/10-1055-s-0042-1750760-i2200068pt-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/32d992d64094/10-1055-s-0042-1750760-i2200068en-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/fe6f7f61adcd/10-1055-s-0042-1750760-i2200068en-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/3222ad34b4bf/10-1055-s-0042-1750760-i2200068en-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/a6082c07b181/10-1055-s-0042-1750760-i2200068en-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/64f8daaf51c6/10-1055-s-0042-1750760-i2200068en-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/d0f7ab649a8e/10-1055-s-0042-1750760-i2200068en-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/52f23d3fcd87/10-1055-s-0042-1750760-i2200068en-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bacf341f1997/10-1055-s-0042-1750760-i2200068en-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/2ee11bf2d18b/10-1055-s-0042-1750760-i2200068en-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bb012ca20775/10-1055-s-0042-1750760-i2200068en-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/5a16cad2041a/10-1055-s-0042-1750760-i2200068pt-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/adc9689bda0d/10-1055-s-0042-1750760-i2200068pt-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/d3ded60d47a8/10-1055-s-0042-1750760-i2200068pt-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bcf3b947760c/10-1055-s-0042-1750760-i2200068pt-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/94cde20d8118/10-1055-s-0042-1750760-i2200068pt-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/2febd4972a94/10-1055-s-0042-1750760-i2200068pt-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/f7bedb0ade29/10-1055-s-0042-1750760-i2200068pt-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/39cd50cdf1e1/10-1055-s-0042-1750760-i2200068pt-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/0fd4a44ae6e1/10-1055-s-0042-1750760-i2200068pt-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/de355df95009/10-1055-s-0042-1750760-i2200068pt-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/32d992d64094/10-1055-s-0042-1750760-i2200068en-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/fe6f7f61adcd/10-1055-s-0042-1750760-i2200068en-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/3222ad34b4bf/10-1055-s-0042-1750760-i2200068en-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/a6082c07b181/10-1055-s-0042-1750760-i2200068en-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/64f8daaf51c6/10-1055-s-0042-1750760-i2200068en-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/d0f7ab649a8e/10-1055-s-0042-1750760-i2200068en-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/52f23d3fcd87/10-1055-s-0042-1750760-i2200068en-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bacf341f1997/10-1055-s-0042-1750760-i2200068en-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/2ee11bf2d18b/10-1055-s-0042-1750760-i2200068en-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bb012ca20775/10-1055-s-0042-1750760-i2200068en-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/5a16cad2041a/10-1055-s-0042-1750760-i2200068pt-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/adc9689bda0d/10-1055-s-0042-1750760-i2200068pt-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/d3ded60d47a8/10-1055-s-0042-1750760-i2200068pt-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/bcf3b947760c/10-1055-s-0042-1750760-i2200068pt-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/94cde20d8118/10-1055-s-0042-1750760-i2200068pt-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/2febd4972a94/10-1055-s-0042-1750760-i2200068pt-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/f7bedb0ade29/10-1055-s-0042-1750760-i2200068pt-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/39cd50cdf1e1/10-1055-s-0042-1750760-i2200068pt-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/0fd4a44ae6e1/10-1055-s-0042-1750760-i2200068pt-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4f/10212646/de355df95009/10-1055-s-0042-1750760-i2200068pt-10.jpg

相似文献

[1]
Application of 3D Printing Technology in the Treatment of Hoffa's Fracture Nonunion.

Rev Bras Ortop (Sao Paulo). 2022-10-3

[2]
An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery.

J Multidiscip Healthc. 2023-4-4

[3]
Hoffa's fracture with ipsilateral fibular fracture in a 16-year-old girl: An approach to a rare injury.

Chin J Traumatol. 2015

[4]
Printed three-dimensional anatomic templates for virtual preoperative planning before reconstruction of old pelvic injuries: initial results.

Chin Med J (Engl). 2015-2-20

[5]
Hoffa's fracture in a five-year-old child diagnosed and treated with the assistance of arthroscopy: A case report.

World J Clin Cases. 2022-12-26

[6]
Hoffa's fracture of the medial femoral condyle in a child treated with open reduction and internal fixation: A case report.

Trauma Case Rep. 2018-3-28

[7]
Hoffa's fracture of the medial femoral condyle in child.

Trauma Case Rep. 2023-8-21

[8]
Hoffa's Fracture with Associated Injuries Around the Knee Joint: An Approach to a Rare Injury.

Cureus. 2020-4-28

[9]
3D-printed patient-specific applications in orthopedics.

Orthop Res Rev. 2016-10-14

[10]
A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction.

Injury. 2016-10

引用本文的文献

[1]
Optimizing management strategies for malunion and nonunion of Hoffa fractures: a detailed case series with a proposed treatment algorithm.

Eur J Orthop Surg Traumatol. 2024-12-12

本文引用的文献

[1]
Impact of 3D Printed Calcaneal Models on Fracture Understanding and Confidence in Orthopedic Surgery Residents.

J Surg Educ. 2020

[2]
Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: A systematic review and meta-analysis.

World J Orthop. 2020-1-18

[3]
Value of three-dimensional printing of fractures in orthopaedic trauma surgery.

J Int Med Res. 2020-1

[4]
Virtual preoperative planning and 3D printing are valuable for the management of complex orthopaedic trauma.

Chin J Traumatol. 2019-12

[5]
The efficacy of 3D printing-assisted surgery for traumatic fracture: a meta-analysis.

Postgrad Med J. 2019-7-19

[6]
The Role of 3D Printing in Medical Applications: A State of the Art.

J Healthc Eng. 2019-3-21

[7]
Publication trends and knowledge mapping in 3D printing in orthopaedics.

J Clin Orthop Trauma. 2018

[8]
Algorithmic treatment of Busch-Hoffa distal femur fractures: A technical note based on a modified Letenneur classification.

Injury. 2018-8

[9]
The Feasibility of 3D Printing Technology on the Treatment of Pilon Fracture and Its Effect on Doctor-Patient Communication.

Biomed Res Int. 2018-1-18

[10]
Clinical experience with three-dimensional printing techniques in orthopedic trauma.

J Orthop Sci. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索